Critical properties of the synchronization transition in space-time chaos.

We study two coupled spatially extended dynamical systems which exhibit space-time chaos. The transition to the synchronized state is treated as a nonequilibrium phase transition, where the average synchronization error is the order parameter. The transition in one-dimensional systems is found to be generically in the universality class of the Kardar-Parisi-Zhang equation with a growth-limiting term ("bounded KPZ"). For systems with very strong nonlinearities in the local dynamics, however, the transition is found to be in the universality class of directed percolation.