High-Order Solution-Adaptive Central Essentially Non-Oscillatory (CENO) Method for Viscous Flows

[1]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[2]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[3]  P. Colella,et al.  A fourth-order accurate local refinement method for Poisson's equation , 2005 .

[4]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[5]  Guy Capdeville,et al.  Towards a compact high-order method for non-linear hyperbolic systems. I: The Hermite Least-Square Monotone (HLSM) reconstruction , 2009, J. Comput. Phys..

[6]  João Luiz F. Azevedo,et al.  High-Order Unstructured Essentially Nonoscillatory and Weighted Essentially Nonoscillatory Schemes for Aerodynamic Flows , 2006 .

[7]  R. Penrose A Generalized inverse for matrices , 1955 .

[8]  Chang-Hsien Tai,et al.  Design of optimally smoothing multistage schemes for the Euler equations , 1992 .

[9]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[10]  Zhi J. Wang,et al.  A Parameter-Free Generalized Moment Limiter for High-Order Methods on Unstructured Grids , 2009 .

[11]  K. Powell,et al.  An accuracy assessment of Cartesian-mesh approaches for the Euler equations , 1993 .

[12]  Thomas Sonar,et al.  On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations : polynomial recovery, accuracy and stencil selection , 1997 .

[13]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[14]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[15]  Clinton P. T. Groth,et al.  Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods , 2008 .

[16]  W. Coirier An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .

[17]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[18]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[19]  Carl Ollivier-Gooch,et al.  A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows , 2008, J. Comput. Phys..

[20]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[21]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[22]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[23]  Guy Capdeville,et al.  A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes , 2008, J. Comput. Phys..

[24]  Rémi Abgrall,et al.  Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems , 2006, J. Comput. Phys..

[25]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[26]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[27]  C. Ollivier-Gooch Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction , 1997 .

[28]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[29]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[30]  Clint Dawson,et al.  Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids , 2008, J. Comput. Phys..

[31]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[32]  T. Linde,et al.  A practical, general‐purpose, two‐state HLL Riemann solver for hyperbolic conservation laws , 2002 .

[33]  Clinton P. T. Groth,et al.  A parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows , 2010, J. Comput. Phys..

[34]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[35]  Leland Jameson,et al.  AMR vs High Order Schemes , 2003, J. Sci. Comput..

[36]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[37]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[38]  D. Stanescu,et al.  Essentially Nonoscillatory Euler Solutions on Unstructured Meshes Using Extrapolation , 1998 .

[39]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[40]  Mark C. Thompson,et al.  Computations of the drag coefficients for low-Reynolds-number flow past rings , 2005, Journal of Fluid Mechanics.

[41]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[42]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[43]  R. Henderson Details of the drag curve near the onset of vortex shedding , 1995 .

[44]  Clinton P. T. Groth,et al.  Assessment of Riemann solvers for unsteady one-dimensional inviscid flows for perfect gases , 1988 .

[45]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .