On orthonormal Muntz-Laguerre filters
暂无分享,去创建一个
[1] Preston R. Clement. On Completeness of Basis Functions Used for Signal Analysis , 1963 .
[2] Satoru Takenaka. On the Orthogonal Functions and a New Formula of Interpolation , 1925 .
[3] V. Operstein,et al. Full Müntz Theorem inLp0, 1] , 1996 .
[4] L. Knockaert. Orthonormal Riemann filter systems. , 2000 .
[5] G. Szegő. Polynomials orthogonal on the unit circle , 1939 .
[6] W. Kautz. Transient synthesis in the time domain , 1954 .
[7] Tamás Erdélyi,et al. Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .
[8] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .
[9] Luc Knockaert. Equivalent formulations of the Müntz-Szász completeness condition for systems of complex exponentials , 2002, J. Frankl. Inst..
[10] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[11] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[12] Brett Ninness,et al. Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..
[13] Kok Lay Teo,et al. Continuous-time envelope-constrained filter design via Laguerre filters and H/sub /spl infin// optimization methods , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[14] Otto Szász. On closed sets of rational functions , 1953 .
[15] Michel Verhaegen,et al. Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..
[16] J. Korevaar,et al. Entire functions and Müntz-Szász type approximation , 1971 .
[17] Kok Lay Teo,et al. Continuous-time envelope-constrained filter design via Laguerre filters and 𝒽∞ optimization methods , 1998, IEEE Trans. Signal Process..
[18] M. Crum,et al. On the Theorems of Müntz and Szász , 1956 .
[19] Daniël De Zutter,et al. Passive reduced order multiport modeling: the Padé-Laguerre, Krylov-Arnoldi-SVD connection. , 1999 .