On orthonormal Muntz-Laguerre filters

When the Muntz-Szasz (1953) condition holds, the Muntz-Laguerre filters form a uniformly bounded orthonormal basis in Hardy space. This has consequences in terms of optimal pole-cancellation schemes, and it also allows for a generalization of Lerch's theorem.

[1]  Preston R. Clement On Completeness of Basis Functions Used for Signal Analysis , 1963 .

[2]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[3]  V. Operstein,et al.  Full Müntz Theorem inLp0, 1] , 1996 .

[4]  L. Knockaert Orthonormal Riemann filter systems. , 2000 .

[5]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[6]  W. Kautz Transient synthesis in the time domain , 1954 .

[7]  Tamás Erdélyi,et al.  Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .

[8]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[9]  Luc Knockaert Equivalent formulations of the Müntz-Szász completeness condition for systems of complex exponentials , 2002, J. Frankl. Inst..

[10]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[12]  Brett Ninness,et al.  Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..

[13]  Kok Lay Teo,et al.  Continuous-time envelope-constrained filter design via Laguerre filters and H/sub /spl infin// optimization methods , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Otto Szász On closed sets of rational functions , 1953 .

[15]  Michel Verhaegen,et al.  Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..

[16]  J. Korevaar,et al.  Entire functions and Müntz-Szász type approximation , 1971 .

[17]  Kok Lay Teo,et al.  Continuous-time envelope-constrained filter design via Laguerre filters and 𝒽∞ optimization methods , 1998, IEEE Trans. Signal Process..

[18]  M. Crum,et al.  On the Theorems of Müntz and Szász , 1956 .

[19]  Daniël De Zutter,et al.  Passive reduced order multiport modeling: the Padé-Laguerre, Krylov-Arnoldi-SVD connection. , 1999 .