Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

[1]  Guy Chavent,et al.  Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..

[2]  Ludovic Métivier,et al.  Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation , 2015 .

[3]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[4]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[5]  Thomas Frauenfelder,et al.  Quantitative imaging. , 2015, Investigative radiology.

[6]  Brittany D. Froese,et al.  Application of the Wasserstein metric to seismic signals , 2013, 1311.4581.

[7]  Paul Sava,et al.  Wave‐equation migration velocity analysis , 2004 .

[8]  R. Shipp,et al.  Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data , 2002 .

[9]  Andreas Fichtner,et al.  Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle , 2009 .

[10]  L. Guasch,et al.  Adaptive Waveform Inversion - FWI Without Cycle Skipping - Theory , 2014 .

[11]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[12]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[13]  Ying Rao,et al.  Reflection seismic waveform tomography , 2009 .

[14]  Olav I. Barkved,et al.  Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall , 2010 .

[15]  Romain Brossier,et al.  Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation , 2015 .

[16]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[17]  Wim A. Mulder,et al.  A correlation-based misfit criterion for wave-equation traveltime tomography , 2010 .

[18]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[19]  Paul Sava,et al.  Wave‐equation migration velocity analysis. II. Subsalt imaging examples , 2004 .

[20]  Paul Sava,et al.  A deconvolution‐based objective function for wave‐equation inversion , 2011 .

[21]  S. Brandsberg-Dahl,et al.  The 2004 BP Velocity Benchmark , 2005 .

[22]  Andrew Ratcliffe,et al.  Anisotropic 3 D full-waveform inversion , 2013 .

[23]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[24]  Biondo Biondi,et al.  Tomographic full-waveform inversion (TFWI) by combining FWI and wave-equation migration velocity analysis , 2013 .

[25]  Graham. J. Hicks,et al.  Arbitrary source and receiver positioning in finite‐difference schemes using Kaiser windowed sinc functions , 2002 .

[26]  Guy Chavent,et al.  Automatic Determination of Velocities Via Migration-based Traveltime Waveform Inversion: A Synthetic Data Example , 1994 .

[27]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[28]  Robert Cedergren,et al.  Guided tour , 1990, Nature.

[29]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[30]  P. Swarztrauber A direct Method for the Discrete Solution of Separable Elliptic Equations , 1974 .

[31]  Gilles Lambaré The Use of Locally Coherent Events In Depth Processing : a State of the Art , 2002 .

[32]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[33]  Ludovic Métivier,et al.  Time and Frequency-domain FWI Implementations Based on Time Solver - Analysis of Computational Complexities , 2014 .

[34]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[35]  J. Frédéric Bonnans,et al.  Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .

[36]  Mark Noble,et al.  Wavelengths of Earth structures that can be resolved from seismic reflection data , 1989 .

[37]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[38]  C. Villani Topics in Optimal Transportation , 2003 .

[39]  Ludovic Métivier,et al.  Acoustic Multi-Parameter FWI for the Reconstruction of P-Wave Velocity, Density and Attenuation: Preconditioned Truncated Newton Approach , 2015 .

[40]  J. Renaud Numerical Optimization, Theoretical and Practical Aspects— , 2006, IEEE Transactions on Automatic Control.

[41]  John C. Adams,et al.  MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial d , 1989 .

[42]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[43]  Jeroen Tromp,et al.  Supplementary information for Structure of the European Upper Mantle revealed by adjoint tomography , 2012 .

[44]  Gene H. Golub,et al.  On direct methods for solving Poisson's equation , 1970, Milestones in Matrix Computation.

[45]  S. Operto,et al.  Which data residual norm for robust elastic frequency-domain full waveform inversion? , 2010 .

[46]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[47]  Dave Hale,et al.  Dynamic warping of seismic images , 2013 .

[48]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[49]  Paul Sava,et al.  Wave-equation migration velocity analysis. I. Theory , 2004 .

[50]  S. Hanasoge Full Waveform Inversion , 2015 .

[51]  Paul Sava,et al.  Time-shift imaging condition in seismic migration , 2006 .

[52]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .

[53]  Ludovic Métivier,et al.  Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures , 2014 .

[54]  Romain Brossier,et al.  Velocity model building from seismic reflection data by full‐waveform inversion , 2015 .

[55]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[56]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[57]  J. Tromp,et al.  Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements , 2011 .

[58]  Michel Kern,et al.  Inversion of reflection seismograms by differential semblance analysis: algorithm structure and synthetic examples1 , 1994 .

[59]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[60]  Ludovic Métivier,et al.  The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication , 2016 .

[61]  G. Nolet A Breviary of Seismic Tomography: Frontmatter , 2008 .

[62]  Yu Zhang,et al.  Inversion on Reflected Seismic Wave , 2012 .

[63]  Carl Tape,et al.  An automated time-window selection algorithm for seismic tomography , 2009 .

[64]  L. Hanin Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces , 1992 .

[65]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[66]  Biondo Biondi,et al.  3D angle‐domain common‐image gathers for migration velocity analysis , 2004 .

[67]  Denes Vigh,et al.  Elastic full-waveform inversion application using multicomponent measurements of seismic data collection , 2014 .

[68]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[69]  Gene H. Golub,et al.  Matrix computations , 1983 .

[70]  A. Devaney Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Guust Nolet,et al.  A Breviary of Seismic Tomography: Future directions , 2008 .

[72]  R. Plessix,et al.  Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset , 2010 .

[73]  Adam M. Oberman,et al.  A VISCOSITY SOLUTION APPROACH TO THE MONGE-AMP ERE FORMULATION OF THE OPTIMAL TRANSPORTATION PROBLEM , 2012, 1208.4873.

[74]  Laurent Demanet,et al.  Velocity estimation via registration-guided least-squares inversion , 2013, 1304.5258.

[75]  Jon F. Claerbout,et al.  Imaging the Earth's Interior , 1985 .

[76]  S. Operto,et al.  Fast full waveform inversion with source encoding and second-order optimization methods , 2015 .

[77]  Ludovic Métivier,et al.  A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice , 2013 .

[78]  C. Villani Optimal Transport: Old and New , 2008 .

[79]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[80]  Ludovic Métivier,et al.  Multi-Parameter FWI - An Illustration of the Hessian Operator Role for Mitigating Trade-off between Parameter Classes , 2014 .

[81]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[82]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[83]  Dmitry Borisov,et al.  Three-dimensional elastic full waveform inversion in a marine environment using multicomponent ocean-bottom cables: a synthetic study , 2015 .

[84]  W. Symes,et al.  Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging , 2004 .

[85]  Ludovic Métivier,et al.  Full Waveform Inversion and the Truncated Newton Method , 2013, SIAM J. Sci. Comput..

[86]  Dave Hale,et al.  Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion , 2013 .

[87]  Ru-Shan Wu,et al.  Seismic envelope inversion: reduction of local minima and noise resistance , 2015 .

[88]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[89]  Kees Wapenaar,et al.  Reconstructing the primary reflections in seismic data by Marchenko redatuming and convolutional interferometry , 2016 .

[90]  Jean Virieux,et al.  Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: a case study , 2004 .

[91]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[92]  Andreas Fichtner,et al.  Theoretical background for continental‐ and global‐scale full‐waveform inversion in the time–frequency domain , 2008 .

[93]  M. Warner,et al.  Anisotropic 3D full-waveform inversion , 2013 .

[94]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[95]  Michel Kern,et al.  Inversion of Reflection Seismograams by Differential Semblance Analysis: Algorithm Structure and Synthetic Examples , 1992 .

[96]  Jean-Pierre Faye,et al.  Prestack Migration Velocities From Focusing Depth Analysis , 1986 .

[97]  R. Clapp Reverse time migration with random boundaries , 2009 .

[98]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .