An isogeometric analysis approach to gradient damage models

Continuum damage formulations are commonly used for the simulation of diffuse fracture processes. Implicit gradient damage models are employed to avoid the spurious mesh dependencies associated with local continuum damage models. The C 0 -continuity of traditional finite elements has hindered the study of higher order gradient damage approximations. In this contribution we use isogeometric finite elements, which allow for the construction of higher order continuous basis functions on complex domains. We study the suitability of isogeometric finite elements for the discretization of higher order gradient damage approximations.

[1]  Hideyuki Sakurai,et al.  ELEMENT-FREE METHODS VS. MESH-LESS CAE , 2006 .

[2]  René de Borst,et al.  Damage, Material Instabilities, and Failure , 2004 .

[3]  L. J. Sluys,et al.  Dispersive properties of gradient-dependent and rate-dependent media , 1994 .

[4]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[5]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[6]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[9]  W. Brekelmans,et al.  Reduction of mesh sensitivity in continuum damage mechanics , 1995 .

[10]  L. J. Sluys,et al.  Explicit and implicit gradient series in damage mechanics , 2002 .

[11]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[12]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[13]  Jerzy Pamin,et al.  Dispersion analysis and element‐free Galerkin solutions of second‐ and fourth‐order gradient‐enhanced damage models , 2000 .

[14]  David F. Rogers,et al.  An Introduction to NURBS , 2000 .

[15]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[16]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[17]  Cv Clemens Verhoosel,et al.  A dissipation‐based arc‐length method for robust simulation of brittle and ductile failure , 2009 .

[18]  Rhj Ron Peerlings,et al.  Interpolation requirements for implicit gradient-enhanced continuum damage models , 2003 .

[19]  E. Ramm,et al.  Microplane modelling and particle modelling of cohesive-frictional materials , 2001 .

[20]  Mgd Marc Geers,et al.  Strain-based transient-gradient damage model for failure analyses , 1998 .

[21]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[22]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[23]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[24]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[25]  Antonio Huerta,et al.  Discretization Influence on Regularization by Two Localization Limiters , 1994 .

[26]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[27]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[28]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[29]  Jean-Louis Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[30]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[31]  Jerzy Pamin,et al.  Some novel developments in finite element procedures for gradient-dependent plasticity , 1996 .

[32]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .