Sensitivity analysis of an identification method dedicated to nonlinear systems working under operational loads

In the paper, the exploitational nonlinear systems identification method based on algorithms of the restoring force, boundary perturbations and direct parameter identification methods is presented. The obtained parameter estimates provide information concerning forces transferred on the foundation and find application in the model-based diagnostics. The results of the sensitivity analysis carried out in order to assess the influence of input parameters uncertainties (accuracy of resonant frequency and amplitude estimates, errors of transfer function estimation in operational conditions, value of introduced additional mass) on the accuracy of estimated system parameters are also presented.

[1]  E. F. Crawley,et al.  Identification of nonlinear system parameters in joints using the force-state mapping technique , 1986 .

[2]  J. Schultze,et al.  Application of non-linear system model updating using feature extraction and parameter effects analysis , 2000 .

[3]  Johan Schoukens,et al.  A LOCAL RESTORING FORCE SURFACE METHoD , 2002 .

[4]  Edward F. Crawley,et al.  Identification of nonlinear structural elements by force-state mapping , 1984 .

[5]  Michael D. Todd,et al.  Use of data-driven phase space models in assessing the strength of a bolted connection in a composite beam , 2004 .

[6]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[7]  Richard H. Rand,et al.  A direct method for non-linear normal modes , 1974 .

[8]  R. Bouc Forced Vibration of Mechanical Systems with Hysteresis , 1967 .

[9]  Joanna Iwaniec Output-Only Technique for Parameter Identification of Nonlinear Systems Working under Operational Loads , 2007 .

[10]  Tadeusz Uhl,et al.  IDENTIFICATION OF NONLINEAR PARAMETERS OF THE SKYTRUCK AIRPLANE LANDING GEAR BY MEANS OF THE OPERATIONAL MODAL ANALYSIS OUTPUT-ONLY METHOD , 2007 .

[11]  H. Chan,et al.  A perturbation-incremental method for strongly non-linear oscillators , 1996 .

[12]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[13]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[14]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[15]  Y. K. Cheung,et al.  A MODIFIED LINDSTEDT–POINCARE METHOD FOR A STRONGLY NON-LINEAR TWO DEGREE-OF-FREEDOM SYSTEM , 1996 .

[16]  P. Ibáñez,et al.  Identification of dynamic parameters of linear and non-linear structural models from experimental data , 1973 .

[17]  Jan Swevers,et al.  Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems , 2004 .

[18]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[19]  Steven W. Shaw,et al.  Tunable Microelectromechanical Filters that Exploit Parametric Resonance , 2005 .

[20]  Henry J. Rice,et al.  Identification of weakly non-linear systems using equivalent linearization , 1995 .

[21]  J. Angeles,et al.  Vibration of Strongly Nonlinear Discontinuous Systems. Foundations of Engineering Mechanics , 2002 .

[22]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[23]  Douglas E. Adams,et al.  A Technique for Estimating Linear Parameters Using Nonlinear Restoring Force Extraction in the Absence of an Input Measurement , 2005 .

[24]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[25]  M. I. Qaisi,et al.  A POWER-SERIES SOLUTION FOR A STRONGLY NON-LINEAR TWO-DEGREE-OF-FREEDOM SYSTEM , 2000 .