Measurement of eco-efficiency and convergence: Evidence from a non-parametric frontier analysis

Abstract This study applies a nonparametric model to estimate the eco-efficiency across the US states over the period 1990–2017. To capture the environmental damage caused by anthropogenic activities, we utilize one global (CO2) and two local (SO2 and NOX) pollutants emitted by power plants to serve as inputs to the eco-efficiency analysis and states’ GDP levels as an output. The paper's primary contribution is to employ for the first time in the empirical literature a probabilistic frontier analysis (order-m estimators) to exemplify the US regional convergence/divergence patterns on eco-efficiency. The results based on the Phillips and Sul methodology (2007; 2009) indicate divergence for the whole sample. However, at least five regional convergence clubs are formulated dividing the US states into “champions” and “laggards” according to their eco-efficiency estimates. Moreover, we examine the convergence-divergence hypothesis by employing an alternative nonparametric distributional dynamics approach based on a Markov chain. Although the stochastic kernels uncover the presence of regional clustering among the US territory, they signify the existence of at least two convergence clubs. Our results survive robustness checks under the inclusion of two alternative eco-efficiency indicators, providing significant implications to government officials and policymakers.

[1]  Timo Kuosmanen,et al.  Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model , 2012 .

[2]  Margherita Gerolimetto,et al.  Regional Convergence and Aggregate Business Cycle in the United States , 2015 .

[3]  Léopold Simar,et al.  Fast and efficient computation of directional distance estimators , 2019, Ann. Oper. Res..

[4]  Nickolaos G. Tzeremes,et al.  Financial centres' competitiveness and economic convergence: Evidence from the European Union regions , 2017 .

[5]  D. McFadden Cost, Revenue, and Profit Functions , 1978 .

[6]  Donggyu Sul,et al.  Economic Transition and Growth , 2005 .

[7]  W. Poganietz,et al.  Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency , 2011 .

[8]  Danny Quah,et al.  Empirical cross-section dynamics in economic growth , 1993 .

[9]  Danny Quah,et al.  Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs , 1997 .

[10]  Konstantinos Kounetas,et al.  A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps? , 2019, Eur. J. Oper. Res..

[11]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[12]  David V. Conesa,et al.  On the dynamics of eco-efficiency performance in the European Union , 2016, Comput. Oper. Res..

[13]  Falko Juessen,et al.  A distribution dynamics approach to regional GDP convergence in unified Germany , 2009, SSRN Electronic Journal.

[14]  M. Kortelainen,et al.  Dynamic environmental performance analysis: A Malmquist index approach , 2008 .

[15]  John A. List,et al.  The Environmental Kuznets Curve: Real Progress or Misspecified Models? , 2003, Review of Economics and Statistics.

[16]  J. J. Fourier,et al.  The Analytical Theory of Heat , 2009 .

[17]  Steven N. Durlauf,et al.  Chapter 8 Growth Econometrics , 2005 .

[18]  Léopold Simar,et al.  Globalization and productivity: A robust nonparametric world frontier analysis , 2017 .

[19]  J. A. Gómez-Limón,et al.  Assessing farming eco-efficiency: a Data Envelopment Analysis approach. , 2011, Journal of environmental management.

[20]  Andrés J. Picazo-Tadeo,et al.  Eco-Efficiency and Convergence in OECD Countries , 2013 .

[21]  Donggyu Sul,et al.  Transition Modeling and Econometric Convergence Tests , 2007 .

[22]  S. Schaltegger,et al.  Corporate Environmental Accounting , 1996 .

[23]  J. Wesley Burnett,et al.  Club convergence and clustering of U.S. energy-related CO2 emissions , 2016 .

[24]  Barbara K. Buchner,et al.  Economic consequences of the US withdrawal from the Kyoto/Bonn Protocol , 2002 .

[25]  Timo Kuosmanen,et al.  Measuring Eco‐efficiency of Production with Data Envelopment Analysis , 2005 .

[26]  Konstantinos Kounetas,et al.  Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides , 2018 .

[27]  Paul A. Johnson,et al.  A Continuous State Space Approach to "Convergence by Parts" , 2005 .

[28]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[29]  Timo Kuosmanen,et al.  Measurement and Analysis of Eco‐efficiency: An Economist's Perspective , 2005 .

[30]  Timo Kuosmanen,et al.  Modeling joint production of multiple outputs in StoNED: Directional distance function approach , 2017, Eur. J. Oper. Res..

[31]  John Larsen Bottom Line on State and Federal Policy Roles , 2008 .

[32]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[33]  Timo Kuosmanen,et al.  Measuring Eco-efficiency of Production: A Frontier Approach , 2004 .

[34]  Timo Kuosmanen,et al.  Nonparametric Efficiency EstimationIn Stochastic Environments , 2002, Oper. Res..

[35]  Kerui Du,et al.  Econometric Convergence Test and Club Clustering Using Stata , 2017 .

[36]  J. Florens,et al.  Functional convergence of quantile-type frontiers with application to parametric approximations , 2008 .

[37]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[38]  Paul A. Johnson,et al.  A nonparametric analysis of income convergence across the US states , 2000 .

[39]  Timo Kuosmanen,et al.  DEA with efficiency classification preserving conditional convexity , 2001, Eur. J. Oper. Res..

[40]  Andrés J. Picazo-Tadeo,et al.  Are the determinants of CO2 emissions converging among OECD countries , 2013 .

[41]  Danny Quah,et al.  Regional convergence clusters across Europe , 1996 .

[42]  D. Quah Galton's Fallacy and Tests of the Convergence Hypothesis (Now published in Scandinavian Journal of Economics 95 (4), 1993, pp.427-443.) , 1993 .

[43]  Léopold Simar,et al.  Central Limit Theorems for Conditional Efficiency Measures and Tests of the ‘Separability’ Condition in Non�?Parametric, Two�?Stage Models of Production , 2018 .

[44]  L. Simar,et al.  Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach , 2007 .

[45]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[46]  X. Sala-i-Martin,et al.  Lecture Notes on Economic Growth(Ii): Five Prototype Models of Endogenous Growth , 1990 .

[47]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[48]  Ali Emrouznejad,et al.  DEA models for ratio data:convexity consideration , 2009 .

[49]  Georgios Fotopoulos,et al.  Nonparametric analysis of regional income dynamics: The case of Greece , 2006 .

[50]  Danny Quah,et al.  Convergence empirics across economies with (some) capital mobility , 1996 .

[51]  Danny Quah,et al.  Twin peaks : growth and convergence in models of distribution dynamics , 1996 .

[52]  Timo Kuosmanen,et al.  Data Envelopment Analysis as Nonparametric Least-Squares Regression , 2010, Oper. Res..

[53]  P. W. Wilson,et al.  Two-stage DEA: caveat emptor , 2011 .

[54]  Léopold Simar,et al.  Parametric approximations of nonparametric frontiers , 2005 .

[55]  Andrés J. Picazo-Tadeo,et al.  Is eco-efficiency in greenhouse gas emissions converging among European Union countries? , 2014 .

[56]  J. Fourier Théorie analytique de la chaleur , 2009 .

[57]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[58]  G. Grossman,et al.  Economic Growth and the Environment , 1994 .