Inferring preference correlations from social networks

Abstract Identifying consumer preferences is a key challenge in customizing electronic commerce sites to individual users. The increasing availability of online social networks provides one approach to this problem: people linked in these networks often share preferences, allowing inference of interest in products based on knowledge of a consumer’s network neighbors and their interests. This paper evaluates the benefits of inference from online social networks in two contexts: a random graph model and a web site allowing people to both express preferences and form distinct social and preference links. We determine conditions on network topology and preference correlations leading to extended clusters of people with similar interests. Knowledge of when such clusters occur improves the usefulness of social network-based inference for identifying products likely to interest consumers based on information from a few people in the network. Such estimates could help sellers design customized bundles of products and improve combinatorial auctions for complementary products.

[1]  Priscilla S. Markwood,et al.  The Long Tail: Why the Future of Business is Selling Less of More , 2006 .

[2]  Paul Resnick,et al.  Reputation systems , 2000, CACM.

[3]  Vincent Conitzer,et al.  Combinatorial Auctions with Structured Item Graphs , 2004, AAAI.

[4]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[5]  Paul R. Cohen,et al.  Empirical methods for artificial intelligence , 1995, IEEE Expert.

[6]  D. Prelec A Bayesian Truth Serum for Subjective Data , 2004, Science.

[7]  Moshe Tennenholtz Some Tractable Combinatorial Auctions , 2000, AAAI/IAAI.

[8]  Lorin M. Hitt,et al.  Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-Integer Programming Approach , 2008, Manag. Sci..

[9]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[10]  R. Armstrong The Long Tail: Why the Future of Business Is Selling Less of More , 2008 .

[11]  Tad Hogg,et al.  Using Unsuccessful Auction Bids to Identify Latent Demand , 2000 .

[12]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[13]  Vitaly Shmatikov,et al.  De-anonymizing Social Networks , 2009, 2009 30th IEEE Symposium on Security and Privacy.

[14]  Zan Huang,et al.  A Comparative Study of Recommendation Algorithms in E- Commerce Applications , 2005 .

[15]  Kagan Tumer,et al.  Collectives and Design Complex Systems , 2004 .

[16]  Robert Garfinkel,et al.  Empirical Analysis of the Business Value of Recommender Systems , 2006 .

[17]  Toby Walsh,et al.  Representing and Reasoning with Preferences , 2007, AI Mag..

[18]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[19]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[20]  Gayatri Swamynathan,et al.  Do social networks improve e-commerce?: a study on social marketplaces , 2008, WOSN '08.

[21]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Oliver J. Rutz,et al.  A Model of Individual Keyword Performance in Paid Search Advertising , 2007 .

[23]  Michael K. Reiter,et al.  Anonymous Web transactions with Crowds , 1999, CACM.

[24]  Tad Hogg,et al.  Dynamics of Large Autonomous Computational Systems , 2004 .

[25]  Chris Anderson,et al.  The Long Tail: Why the Future of Business is Selling Less of More , 2006 .

[26]  W. Bainbridge The Scientific Research Potential of Virtual Worlds , 2007, Science.

[27]  P. Doreian Causality in Social Network Analysis , 2001 .

[28]  Lada A. Adamic,et al.  Search in Power-Law Networks , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Jennifer Golbeck,et al.  Weaving a Web of Trust , 2008, Science.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Stefano Battiston,et al.  A model of a trust-based recommendation system on a social network , 2006, Autonomous Agents and Multi-Agent Systems.

[32]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[33]  Anindya Ghose,et al.  Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets , 2008, Inf. Syst. Res..

[34]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[35]  B. Moldovanu,et al.  Allocative and Informational Externalities in Auctions and Related Mechanisms , 2005 .

[36]  Anindya Ghose,et al.  An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets , 2009, Manag. Sci..

[37]  Amnon Meisels,et al.  Recommender System from Personal Social Networks , 2007, AWIC.

[38]  Alessandro Acquisti,et al.  Identity Management, Privacy, and Price Discrimination , 2008, IEEE Security & Privacy.

[39]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[40]  Jyun-Cheng Wang,et al.  Recommending trusted online auction sellers using social network analysis , 2008, Expert Syst. Appl..

[41]  C. Manski Identification of Endogenous Social Effects: The Reflection Problem , 1993 .

[42]  Krzysztof Ostaszewski Bargaining and Market Behavior: Essays in Experimental Economics , 2003 .

[43]  Paul Resnick,et al.  The value of reputation on eBay: A controlled experiment , 2002 .

[44]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[45]  Hsinchun Chen,et al.  A Comparison of Collaborative-Filtering Recommendation Algorithms for E-commerce , 2007, IEEE Intelligent Systems.

[46]  M. Jackson A Survey of Models of Network Formation: Stability and Efficiency , 2003 .

[47]  T. Snijders,et al.  Modeling the Coevolution of Networks and Behavior , 2007 .

[48]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[49]  Dennis M. Wilkinson,et al.  Strong regularities in online peer production , 2008, EC '08.

[50]  C. Plott,et al.  A Model of Agenda Influence on Committee Decisions , 1978 .

[51]  Moni Naor,et al.  Privacy preserving auctions and mechanism design , 1999, EC '99.

[52]  Chuck Lam,et al.  SNACK: incorporating social network information in automated collaborative filtering , 2004, EC '04.

[53]  Kristina Lerman User Participation in Social Media: Digg Study , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[54]  Amy L. Fairchild,et al.  Surveillance and Privacy , 2000, Science.

[55]  Adam Rifkin,et al.  Weaving a Web of trust , 1997, World Wide Web J..

[56]  Tad Hogg,et al.  Enhancing reputation mechanisms via online social networks , 2004, EC '04.

[57]  Tomasz Luczak Phase transition phenomena in random discrete structures , 1994, Discret. Math..

[58]  Erik Brynjolfsson,et al.  Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers , 2003, Manag. Sci..

[59]  Arun Sundararajan,et al.  Reputation premiums in electronic peer-to-peer markets: analyzing textual feedback and network structure , 2005, P2PECON '05.

[60]  Caroline Haythornthwaite,et al.  Studying Online Social Networks , 2006, J. Comput. Mediat. Commun..

[61]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[62]  Mark S. Granovetter T H E S T R E N G T H O F WEAK TIES: A NETWORK THEORY REVISITED , 1983 .

[63]  H. Varian,et al.  Conditioning Prices on Purchase History , 2005 .

[64]  Martin Ranger The Generalized Ascending Proxy Auction in the Presence of Externalities , 2005 .

[65]  Tad Hogg,et al.  Enhancing privacy and trust in electronic communities , 1999, EC '99.

[66]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  T. Snijders,et al.  Longitudinal models in the behavioral and related sciences , 2007 .

[68]  Pei-yu Chen,et al.  Does Collaborative Filtering Technology Impact Sales? Empirical Evidence from Amazon.Com , 2007 .

[69]  Bernardo A. Huberman,et al.  Eliminating Public Knowledge Biases in Information-Aggregation Mechanisms , 2004, Manag. Sci..

[70]  G. Demange,et al.  Group Formation in Economics , 2005 .

[71]  T. Snijders,et al.  Bayesian inference for dynamic social network data , 2007 .

[72]  Tomasz Łuczak,et al.  Phase transition phenomena in random discrete structures , 1994 .

[73]  A. Pentland Automatic mapping and modeling of human networks , 2007 .

[74]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[75]  Tad Hogg,et al.  Multiple Relationship Types in Online Communities and Social Networks , 2008, AAAI Spring Symposium: Social Information Processing.

[76]  David C. Parkes,et al.  Iterative Combinatorial Auctions: Theory and Practice , 2000, AAAI/IAAI.

[77]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[78]  Elena Mugellini,et al.  Advances in Intelligent Web Mastering - 2 , 2007 .

[79]  Alden S. Klovdahl,et al.  Social network research and human subjects protection: Towards more effective infectious disease control , 2005, Soc. Networks.

[80]  Hsinchun Chen,et al.  A comparison of collaborative-filtering algorithms for ecommerce , 2007 .

[81]  Peng Wang,et al.  Recent developments in exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[82]  Tad Hogg,et al.  Solving the Organizational Free Riding Problem with Social Networks , 2008, AAAI Spring Symposium: Social Information Processing.

[83]  Wolfgang Wörndl,et al.  Utilizing Physical and Social Context to Improve Recommender Systems , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[84]  M E J Newman,et al.  Identity and Search in Social Networks , 2002, Science.

[85]  Joseph P. Bailey,et al.  Internet Price Discrimination, Self-Regulation, Public Policy and Global Electronic Commerce , 1998 .

[86]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.