A reactive force field (ReaxFF) for zinc oxide

Abstract We have developed a reactive force field (FF) within the ReaxFF framework, for use in molecular dynamics (MD) simulations to investigate structures and reaction dynamics for ZnO catalysts. The force field parameters were fitted to a training set of data points (energies, geometries, charges) derived from quantum-mechanical (QM) calculations. The data points were chosen to give adequate descriptions of (the equations of state for) a number of zinc metal and zinc oxide phases, a number of low-index ZnO surfaces and gas-phase zinc hydroxide clusters. Special emphasis was put on obtaining a good surface description. We have applied the force field to the calculation of atomic vibrational mean square amplitudes for bulk wurtzite–ZnO at 20 K, 300 K and 600 K and we find good agreement with experimental values from the literature. The force field was also applied in a study of the surface growth mechanism for the wurtzite(0 0 0 1) surface. We find that the growth behavior depends on the presence of surface steps.

[1]  Angel Rubio,et al.  Pressure dependence of the lattice dynamics of ZnO: An ab initio approach , 2004 .

[2]  Petter Persson,et al.  Periodic Hartree-Fock Study of the Adsorption of Formic Acid on ZnO(10-10) , 2000 .

[3]  N. Harrison,et al.  An ab initio study of ZnO(101̄0) , 2000 .

[4]  Huifang Xu,et al.  Complex and oriented ZnO nanostructures , 2003, Nature materials.

[5]  H. Koinuma,et al.  Homoepitaxial growth mechanism of ZnO(0001): Molecular-dynamics simulations , 2000 .

[6]  Adri C. T. van Duin,et al.  Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation , 1994 .

[7]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[8]  S. Desgreniers,et al.  High-density phases of ZnO: Structural and compressive parameters , 1998 .

[9]  R. Müller,et al.  Analytic bond-order potential for atomistic simulations of zinc oxide , 2006 .

[10]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[11]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[12]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[13]  T. Bateman Elastic Moduli of Single-Crystal Zinc Oxide , 1962 .

[14]  Hess,et al.  Hartree-Fock study of phase changes in ZnO at high pressure. , 1993, Physical review. B, Condensed matter.

[15]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[16]  K. Kihara,et al.  ANHARMONIC THERMAL VIBRATIONS IN Zno , 1985 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[19]  A. V. Duin,et al.  Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface , 2004 .

[20]  Min Zhou,et al.  Orientation and size dependence of the elastic properties of zinc oxide nanobelts , 2005 .

[21]  S. Abrahams,et al.  Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO , 1989 .

[22]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[23]  D. Binks,et al.  Incorporation of Monovalent Ions in ZnO and Their Influence on Varistor Degradation , 1993 .

[24]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[25]  C. Catlow,et al.  Surface structure of zinc oxide (1010), using an atomistic, semi-infinite treatment , 2002 .

[26]  W. Goddard,et al.  Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx , 2006 .

[27]  R. Schoonheydt,et al.  Comparison of Cluster and Infinite Crystal Calculations on Zeolites with the Electronegativity Equalization Method (EEM) , 1995 .

[28]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[29]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[30]  Lattice dynamics and electrical properties of wurtzite ZnO determined by a density functional theory method , 2006 .

[31]  P. Feibelman,et al.  Force and total-energy calculations for a spatially compact adsorbate on an extended, metallic crystal surface. , 1987, Physical review. B, Condensed matter.

[32]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[34]  H. Schulz,et al.  Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO , 1979 .

[35]  J. Jaffe,et al.  Ab initio study of a CO monolayer adsorbed on the (101̄0) surface of ZnO , 1996 .

[36]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[37]  H. Ledbetter,et al.  Elastic properties of zinc: A compilation and a review , 1977 .

[38]  R. Dovesi,et al.  Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations , 2003 .

[39]  P. Sherwood,et al.  Hybrid QM/MM embedding approach for the treatment of localized surface states in ionic materials , 2004 .

[40]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[41]  Krishnan Raghavachari,et al.  Highly correlated systems. Ionization energies of first row transition metals Sc–Zn , 1989 .