Fabrication Methods and Performance in Fuel Cell and Steam Electrolysis Operation Modes of Small Tubular Solid Oxide Fuel Cells: A Review

Higher energetic density, better resistance to thermal stresses and smaller starting times as compared with conventional planar stacks, make the so-called microtubular SOFC (mT-SOFCs with diameters in the millimeter size region) devices suitable for portable applications in the sub kW energy range. However, fabrication of mT-SOFCs is a challenging process where a number of ceramic layers with different compositions and characteristics have to be placed together in the cylindrical device. Several co-sintering processes have to be performed at different temperatures and using distinct atmospheres to complete cell fabrication. In this review we summarize recent activity in the field of fabrication and characterization of mT-SOFCs, including the use of mT-SOFCs for steam electrolysis.

[1]  W. Dönitz,et al.  High-temperature electrolysis of water vapor—status of development and perspectives for application , 1985 .

[2]  K. Kendall,et al.  A RAPID HEATING CERAMIC FUEL CELL , 1994 .

[3]  Rak-Hyun Song,et al.  Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications , 2008 .

[4]  Norbert Wagner,et al.  Investigation of solid oxide fuel cell short stacks for mobile applications by electrochemical impedance spectroscopy , 2008 .

[5]  Mustafa Fazil Serincan,et al.  Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC) , 2009 .

[6]  B. I. Arias,et al.  Design of industrially scalable microtubular solid oxide fuel cells based on an extruded support , 2014 .

[7]  P. Sarkar,et al.  Anode‐Supported Tubular Micro‐Solid Oxide Fuel Cell , 2007 .

[8]  K. Kendall,et al.  The effect of temperature gradients on thermal cycling and isothermal ageing of micro-tubular solid oxide fuel cells , 2009 .

[9]  Peter Lamp,et al.  Development of an Auxiliary Power Unit with Solid Oxide Fuel Cells for Automotive Applications , 2003 .

[10]  Francesco Calise,et al.  Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures , 2011 .

[11]  Toshio Suzuki,et al.  Energy efficiency of a microtubular solid-oxide fuel cell , 2011 .

[12]  J. Kilner,et al.  Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide , 2011 .

[13]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[14]  M. Mogensen,et al.  High-performance lanthanum-ferrite-based cathode for SOFC , 2005 .

[15]  Bo Liang,et al.  Development of Bi-Metal Anode Microtubular Supports for Solid Oxide Fuel Cells , 2011 .

[16]  Qingxi Fu,et al.  Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment , 2010 .

[17]  Yanhai Du,et al.  Thermal Stability of Portable Microtubular SOFCs and Stacks , 2008 .

[18]  Joel Martinez-Frias,et al.  A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen , 2003 .

[19]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[20]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[21]  M. Laguna-Bercero,et al.  Redox-cycling studies of anode-supported microtubular solid oxide fuel cells , 2012 .

[22]  Miguel A. Laguna-Bercero,et al.  Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell , 2010 .

[23]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[24]  Z. Wen,et al.  Dip-coating and co-sintering technologies for fabricating tubular solid oxide fuel cells , 2009 .

[25]  M. Laguna-Bercero,et al.  Self-Supporting Thin Yttria-Stabilised Zirconia Electrolytes for Solid Oxide Fuel Cells Prepared by Laser Machining , 2011 .

[26]  Alejandro Várez,et al.  Fabrication of 8-YSZ thin-wall tubes by powder extrusion moulding for SOFC electrolytes , 2009 .

[27]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[28]  V. Sglavo,et al.  Comparative Performance Analysis of Anode‐Supported Micro‐Tubular SOFCs with Different Current‐Collection Architectures , 2013 .

[29]  W. Gerrard Effect of Temperature , 1976 .

[30]  Waldemar Bujalski,et al.  Cycling durability studies of IP-SOFC , 2012 .

[31]  Kevin Kendall,et al.  Chapter 8 – Cell and Stack Designs , 2003 .

[32]  P. Sarkar,et al.  Effects of Porous Support Microstructure on Performance of Infiltrated Electrodes in Solid Oxide Fuel Cells , 2011 .

[33]  K. Kendall,et al.  Cycling of three solid oxide fuel cell types , 2007 .

[34]  K. Kendall,et al.  Transient Performance of Micro-Tubular Solid Oxide Fuel Cells , 2011 .

[35]  A. Isenberg Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures , 1981 .

[36]  Kevin Kendall,et al.  Micro-tubular solid oxide fuel cells and stacks , 2011 .

[37]  K. Kendall,et al.  Improved ceramics leading to microtubular Solid Oxide Fuel Cells (mSOFCs) , 2013 .

[38]  M. M. Nasrallah,et al.  Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .

[39]  Kevin Kendall,et al.  Transient Performance of Micro-Tubular Solid Oxide Fuel Cells and Stacks , 2011 .

[40]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[41]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[42]  M. Laguna-Bercero,et al.  Long‐Term Stability Studies of Anode‐Supported Microtubular Solid Oxide Fuel Cells , 2013 .

[43]  Kevin Kendall,et al.  Cycling Studies of Microtubular SOFCs , 2009 .

[44]  Toshiaki Yamaguchi,et al.  Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte , 2010 .

[45]  Zhentao Wu,et al.  Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells , 2011 .

[46]  Dieter Meissner,et al.  Operating Microtubular SOFCS With Hydrogen Chloride and Hydrogen Sulfide Containing Fuels and Synthetic Wood Gas , 2006 .

[47]  M. Segarra,et al.  Processing of graded anode-supported micro-tubular SOFCs based on samaria-doped ceria via gel-casting and spray-coating , 2012 .

[48]  Norberto Fueyo,et al.  Mass transfer in hydrogen-fed anode-supported SOFCs , 2010 .

[49]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2010 .

[50]  Masashi Mori,et al.  Study of steam electrolysis using a microtubular ceramic reactor , 2009 .

[51]  S. Jensen,et al.  Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells , 2010 .

[52]  Toshiaki Yamaguchi,et al.  Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature , 2006 .

[53]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[54]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[55]  T. Etsell,et al.  Electrochemical behavior of solid oxide fuel cell anodes based on infiltration of Y-doped SrTiO3 , 2013 .

[56]  Naoki Watanabe,et al.  Estimation of heat generation rate in solid oxide fuel cell module from single cell performance and module performance based on impedance analysis , 2012 .

[57]  K. D. Zylan,et al.  Article , 1996, Physiology & Behavior.

[58]  Meilin Liu,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbx O3-δ. , 2009 .

[59]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[60]  Kang Li,et al.  High‐Performance, Anode‐Supported, Microtubular SOFC Prepared from Single‐Step‐Fabricated, Dual‐Layer Hollow Fibers , 2011, Advanced materials.

[61]  R. Campaña,et al.  SOFC mini-tubulares basadas en YSZ , 2008 .

[62]  Fritz B. Prinz,et al.  High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation , 2007 .

[63]  Yanhai Du,et al.  The mechanical properties of tubular solid oxide fuel cells , 2003 .

[64]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[65]  Mogens Bjerg Mogensen,et al.  Redox stability of SOFC: Thermal analysis of Ni-YSZ composites , 2009 .

[66]  Lijun Yu,et al.  Performance of a novel La(Sr)MnO 3-Pd composite current collector for solid oxide fuel cell cathode , 2011 .

[67]  K. Kendall,et al.  Microtubular SOFC anode optimisation for direct use on methane , 2008 .

[68]  Raymond J. Gorte,et al.  High‐Performance SOFC Cathodes Prepared by Infiltration , 2009 .

[69]  P. Sarkar,et al.  High performance of microtubular solid oxide fuel cells using Nd2NiO4+δ-based composite cathodes , 2014 .

[70]  K. Li,et al.  NI/NI‐YSZ Current Collector/Anode Dual Layer Hollow Fibers for Micro‐Tubular Solid Oxide Fuel Cells , 2011 .

[71]  Joyce Smith Cooper,et al.  Taxonomies of SOFC material and manufacturing alternatives , 2005 .

[72]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[73]  N. Sammes,et al.  Fabrication and properties of anode-supported tubular solid oxide fuel cells , 2004 .

[74]  Kevin Kendall,et al.  Progress in Microtubular Solid Oxide Fuel Cells , 2010 .

[75]  N. Sammes,et al.  Anode performance control of micro-tubular SOFC via wet coating method , 2011 .

[76]  M. Mori,et al.  Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300 Nm3 h−1 , 2010 .

[77]  M. J. López-Robledoa,et al.  Colloidal stability of gadolinium-doped ceria powder in aqueous and non-aqueous media , 2013 .

[78]  J. Kilner,et al.  Performance and Aging of Microtubular YSZ‐based Solid Oxide Regenerative Fuel Cells , 2011 .

[79]  Andreas Mai,et al.  Performance of LSCF cathodes in cell tests , 2006 .

[80]  Tatsumi Ishihara,et al.  Design of thermal self supported 700 W class, solid oxide fuel cell module using, LSGM thin film micro tubular cells , 2012 .

[81]  Masashi Mori,et al.  La0.6Sr0.4Co0.2Fe0.8O3 − δ Current Collectors via Ag Infiltration for Microtubular Solid Oxide Fuel Cells with Intermediate Temperature Operation , 2009 .

[82]  S. Singhal Solid oxide fuel cells for stationary, mobile, and military applications , 2002 .

[83]  D. Dong,et al.  Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting , 2007 .

[84]  I. Villarreal,et al.  Fabrication, electrochemical characterization and thermal cycling of anode supported microtubular solid oxide fuel cells , 2009 .

[85]  Kang Li,et al.  Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes , 2009 .

[86]  L. Shao,et al.  Optimization of the electrode-supported tubular solid oxide cells for application on fuel cell and steam electrolysis , 2013 .

[87]  Chenghao Yang,et al.  Novel Micro-Tubular High Temperature Solid Oxide Electrolysis Cells , 2011 .

[88]  P. Slater,et al.  New Chemical Systems for Solid Oxide Fuel Cells , 2010 .

[89]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[90]  F. Chen,et al.  Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. , 2014, ACS applied materials & interfaces.

[91]  F. Tietz,et al.  Materials and manufacturing technologies for solid oxide fuel cells , 2010 .

[92]  Stefano Cordiner,et al.  Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities , 2009 .

[93]  Waldemar Bujalski,et al.  Comparative Analysis of Thermal and Redox Cycling for Microtubular SOFCs , 2007 .

[94]  S. Jiang,et al.  Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques , 2009 .