Boron–nitrogen analogues of the fullerenes: the isolated-square rule

Trivalent polyhedra with six square and (x– 4) hexagonal faces are candidates for fully alternating (BN)x‘inorganic fullerene’ cages. Systematic density-functional tight-binding calculations for 4 ⩽x⩽ 30 show that the most stable isomer of this type will have isolated squares, whenever mathematically possible. This rule of thumb for (BN)x cages is the counterpart of the powerful isolated-pentagon rule for the all-carbon fullerenes.

[1]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[2]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[3]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[4]  N. Trinajstic,et al.  Stability of fullerenes with four-membered rings , 1995 .

[5]  Seifert,et al.  Density-functional-based construction of transferable nonorthogonal tight-binding potentials for B, N, BN, BH, and NH. , 1995, Physical review. B, Condensed matter.

[6]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[7]  Martin Karplus,et al.  Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization , 1972 .

[8]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[9]  Miyamoto,et al.  Synthesis of BxCyNz nanotubules. , 1995, Physical review. B, Condensed matter.

[10]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[11]  Patrick W. Fowler,et al.  Increasing cost of pentagon adjacency for larger fullerenes , 1996 .

[12]  Miyamoto,et al.  Electronic properties of tubule forms of hexagonal BC3. , 1994, Physical review. B, Condensed matter.

[13]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[14]  Branko Grünbaum,et al.  The Number of Hexagons and the Simplicity of Geodesics on Certain Polyhedra , 1963, Canadian Journal of Mathematics.

[15]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[16]  Douglas J. Klein,et al.  BN ALTERNANTS : BORON NITRIDE CAGES AND POLYMERS , 1995 .