Relativistic AGN jets – III. Synthesis of synchrotron emission from double-double radio galaxies

The class of double-double radio galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper, we synthesize synchrotron images for DDRGs based on special relativistic hydrodynamic simulations, making advanced approximations for the magnetic fields. We study the synchrotron images for three different radial jet profiles; ordered, entangled, or mixed magnetic fields; spectral ageing from synchrotron cooling; the contribution from different jet components; the viewing angle and Doppler (de-)boosting; and the various epochs of the evolution of the DDRG. To link our results to observational data, we adopt to J1835+6204 as a reference source. In all cases, the synthesized synchrotron images show two clear pairs of hotspots, in the inner and outer lobes. The best resemblance is obtained for the piecewise isochoric jet model, for a viewing angle of approximately ϑ ∼ −71°, i.e. inclined with the lower jet towards the observer, with predominantly entangled (≳70 per cent of the magnetic pressure) in turbulent, rather than ordered fields. The effects of spectral ageing become significant when the ratio of observation frequencies and cut-off frequency νobs/ν∞, 0 ≳ 10−3, corresponding to ∼3 × 102 MHz. For viewing angles ϑ ≲ |−30°|, a DDRG morphology can no longer be recognized. The second jets must be injected within ≲ 4 per cent of the lifetime of the first jets for a DDRG structure to emerge, which is relevant for active galactic nuclei feedback constraints.

[1]  M. Hardcastle,et al.  Investigating the spectral age problem with powerful radio galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  J. Algaba,et al.  Kinematics of the M87 Jet in the Collimation Zone: Gradual Acceleration and Velocity Stratification , 2019, The Astrophysical Journal.

[3]  D. J. Saikia,et al.  A low-frequency study of recently identified double-double radio galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[5]  A. Tchekhovskoy,et al.  Accelerating AGN jets to parsec scales using general relativistic MHD simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  Rony Keppens,et al.  Magnetohydrodynamics of Laboratory and Astrophysical Plasmas , 2019 .

[7]  Rony Keppens,et al.  A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC , 2019, Comput. Phys. Commun..

[8]  J. Martí Numerical Simulations of Jets from Active Galactic Nuclei , 2019, Galaxies.

[9]  K. Gourgouliatos,et al.  Observational signatures of magnetic field structure in relativistic AGN jets , 2019, Astronomy & Astrophysics.

[10]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[11]  M. Jarvis,et al.  LoTSS DR1: Double-double radio galaxies in the HETDEX field , 2018, Astronomy & Astrophysics.

[12]  M. Jarvis,et al.  Radio-loud AGN in the first LoTSS data release , 2018, Astronomy & Astrophysics.

[13]  G. Brunetti,et al.  The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.

[14]  A. Achterberg,et al.  Relativistic theory of particles in a scattering flow – I. Basic equations, diffusion, and drift , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  M. Perucho,et al.  Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets , 2018, Astrophysical Journal.

[16]  M. Hardcastle,et al.  Particle content, radio-galaxy morphology and jet power : all radio-loud AGN are not equal , 2018, 1801.10172.

[17]  M. Hardcastle A simulation-based analytic model of radio galaxies , 2018, 1801.00667.

[18]  I. E. Mellah,et al.  MPI-AMRVAC 2.0 for Solar and Astrophysical Applications , 2017, 1710.06140.

[19]  M. Jamrozy,et al.  Optical and radio properties of extragalactic radio sources with recurrent jet activity , 2017, 1709.01802.

[20]  Somak Raychaudhury,et al.  Discovery of giant radio galaxies from NVSS: radio and infrared properties , 2017, 1704.00516.

[21]  S. J. Tingay,et al.  Extragalactic Peaked-spectrum Radio Sources at Low Frequencies , 2017, 1701.02771.

[22]  D. J. Saikia,et al.  Tale of J1328+2752 : a misaligned double-double radio galaxy hosted by a binary black hole? , 2016, 1612.06452.

[23]  A. Marecki,et al.  Multifrequency study of a double–double radio galaxy J1706+4340 , 2016, 1608.07437.

[24]  D. Ryu,et al.  SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY , 2016, 1608.03997.

[25]  M. Kino,et al.  Evidence for a significant mixture of electron/positron pairs in FRII jets constrained by cocoon dynamics , 2016, 1601.00771.

[26]  M. C. Toribio,et al.  Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620 A fresh view on a restarted AGN and doubeltjes , 2015, 1510.00577.

[27]  S. Shabala,et al.  ENERGETICS AND LIFETIMES OF LOCAL RADIO ACTIVE GALACTIC NUCLEI , 2015, 1504.05204.

[28]  D. Gabuzda,et al.  Transverse Faraday-Rotation Gradients Across the Jets of 15 Active Galactic Nuclei , 2015, 1503.03411.

[29]  C. Fendt,et al.  MODELING MHD ACCRETION–EJECTION: EPISODIC EJECTIONS OF JETS TRIGGERED BY A MEAN-FIELD DISK DYNAMO , 2014, 1409.7003.

[30]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[31]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[32]  R. Keppens,et al.  Relativistic AGN jets – II. Jet properties and mixing effects for episodic jet activity , 2013, 1311.4234.

[33]  Nrao,et al.  Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies , 2013, 1311.1015.

[34]  S. Komissarov,et al.  Three-dimensional magnetohydrodynamic simulations of the Crab nebula , 2013, 1310.2531.

[35]  M. Hardcastle,et al.  Particle acceleration and dynamics of double–double radio galaxies: theory versus observations , 2013, 1309.1401.

[36]  S. Markoff,et al.  Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation , 2013, 1305.2157.

[37]  M. Hardcastle,et al.  Episodic radio galaxies J0116−4722 and J1158+2621: can we constrain the quiescent phase of nuclear activity? , 2013, 1309.1397.

[38]  M. Hardcastle,et al.  Rejuvenated radio galaxies J0041+3224 and J1835+6204: how long can the quiescent phase of nuclear activity last? , 2012, 1309.1394.

[39]  H. Böhringer,et al.  Discovery of an X-ray cavity near the radio lobes of Cygnus A indicating previous AGN activity , 2012, 1207.0699.

[40]  N. Soker,et al.  INFLATING A CHAIN OF X-RAY-DEFICIENT BUBBLES BY A SINGLE JET ACTIVITY EPISODE , 2012, 1205.3661.

[41]  T. Jones,et al.  MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM , 2012, 1203.2312.

[42]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[43]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[44]  T. Piran,et al.  THE PROPAGATION OF RELATIVISTIC JETS IN EXTERNAL MEDIA , 2011, 1107.1326.

[45]  S. Komissarov,et al.  Observations of ‘wisps’ in magnetohydrodynamic simulations of the Crab Nebula , 2009, 0907.3647.

[46]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[47]  R. Keppens,et al.  Extragalactic jets with helical magnetic fields: relativistic MHD simulations , 2008, 0802.2034.

[48]  V. Safouris,et al.  PKS B1545-321: bow shocks of a relativistic jet? , 2008, 0802.0538.

[49]  J. Bird,et al.  The Lifetime of FR II Sources in Groups and Clusters: Implications for Radio-Mode Feedback , 2007, 0709.2167.

[50]  M. Cohen,et al.  Doppler boosting, superluminal motion, and the kinematics of AGN jets , 2007, 0708.3219.

[51]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[52]  M. Cohen,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 12/14/05 INTRINSIC BRIGHTNESS TEMPERATURES OF AGN JETS , 2006 .

[53]  E. Amato,et al.  Simulated synchrotron emission from pulsar wind nebulae , 2006, astro-ph/0603080.

[54]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[55]  D. Harris,et al.  An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources , 2005, astro-ph/0503203.

[56]  G. Ghisellini,et al.  Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties , 2004, astro-ph/0406093.

[57]  P. Edwards,et al.  Parsec-Scale Properties of Markarian 501 , 2003, astro-ph/0309285.

[58]  H. Röttgering,et al.  Radio galaxies with a 'double-double' morphology - III. The case of B 1834+620 , 2000 .

[59]  C. Kaiser,et al.  Radio galaxies with a ‘double-double’ morphology – II. The evolution of double-double radio galaxies and implications for the alignment effect in FRII sources , 1999, astro-ph/9912142.

[60]  Martí,et al.  Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification , 1999, The Astrophysical journal.

[61]  H. Rottgering,et al.  The radio source B 1834+620: A double-double radio galaxy with interesting properties , 1999, astro-ph/9912143.

[62]  H. Rottgering,et al.  Radio galaxies with a 'double-double morphology' - I. Analysis of the radio properties and evidence for interrupted acti , 1999, astro-ph/9912141.

[63]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[64]  Barry Koren,et al.  A robust upwind discretization method for advection, diffusion and source terms , 1993 .

[65]  J. Burns,et al.  Numerical simulations of a restarting jet , 1991 .

[66]  H. Sol,et al.  Two-flow model for extragalactic radio jets , 1989 .

[67]  G. Webb,et al.  Relativistic transport theory for cosmic rays , 1985 .

[68]  M. J. Wilson The hotspots from a time-varying jet , 1984 .

[69]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[70]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[71]  Malcolm S. Longair,et al.  High energy astrophysics: The contents of the Universe – the grand design , 1981 .

[72]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[73]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[74]  G. Blumenthal,et al.  Spherical winds and accretion in general relativity , 1976 .

[75]  Philip M. Morse,et al.  The Relativistic Gas , 1958 .