Generalized linear model based monitoring methods for high‐yield processes

[1]  T. C. Chang,et al.  Charting techniques for monitoring a random shock process , 1999 .

[2]  Robert S. Nocon,et al.  Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data , 2018 .

[3]  Maricel Kann,et al.  Empirical null estimation using zero‐inflated discrete mixture distributions and its application to protein domain data , 2018, Biometrics.

[4]  S. T. A. Niaki,et al.  A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response , 2014 .

[5]  Thong Ngee Goh,et al.  Control charts for processes subject to random shocks , 1995 .

[6]  Thong Ngee Goh,et al.  Spc of a near zero-defect process subject to random shocks , 1993 .

[7]  Philippe Castagliola,et al.  The effect of parameter estimation on phase II monitoring of poisson regression profiles , 2019, Commun. Stat. Simul. Comput..

[8]  Zhen He,et al.  A Combination of CUSUM Charts for Monitoring a Zero-Inflated Poisson Process , 2014, Commun. Stat. Simul. Comput..

[9]  Matthew D. M. Pawley,et al.  Efficient Homogeneously Weighted Moving Average Chart for Monitoring Process Mean Using an Auxiliary Variable , 2019, IEEE Access.

[10]  Bo Zhang,et al.  Simulating comparisons of different computing algorithms fitting zero-inflated Poisson models for zero abundant counts , 2017 .

[11]  Szu Hui Ng,et al.  A Multilevel Zero-Inflated Model for the Study of Copper Hillocks Growth in Integrated Circuits Manufacturing , 2018, IEEE Transactions on Semiconductor Manufacturing.

[12]  Rassoul Noorossana,et al.  ZERO INFLATED POISSON EWMA CONTROL CHART FOR MONITORING RARE HEALTH-RELATED EVENTS , 2012 .

[13]  Abdur Rahim,et al.  A CCC‐r chart for high‐yield processes , 2001 .

[14]  Sangyeol Lee,et al.  Monitoring parameter shift with Poisson integer-valued GARCH models , 2017 .

[15]  Rainer Göb,et al.  An Overview of Control Charts for High‐quality Processes , 2016, Qual. Reliab. Eng. Int..

[16]  Muhammad Riaz,et al.  EWMA-type scheme for monitoring location parameter using auxiliary information , 2017, Comput. Ind. Eng..

[17]  Rodolfo Metulini,et al.  A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade , 2016 .

[18]  Saddam Akber Abbasi,et al.  Enhancing the performance of the EWMA control chart for monitoring the process mean using auxiliary information , 2018, Qual. Reliab. Eng. Int..

[19]  Amitava Mukherjee,et al.  Some simultaneous progressive monitoring schemes for the two parameters of a zero-inflated Poisson process under unknown shifts , 2019, Journal of Quality Technology.

[20]  Min Xie,et al.  Models and monitoring of zero‐inflated processes: The past and current trends , 2019, Qual. Reliab. Eng. Int..

[21]  Thong Ngee Goh,et al.  On the Estimation Error in Zero-Inflated Poisson Model for Process Control , 2003 .

[22]  Airlane Pereira Alencar,et al.  CUSUM control charts to monitor series of Negative Binomial count data , 2017, Statistical methods in medical research.

[23]  Philippe Castagliola,et al.  Control Charts for Monitoring Correlated Poisson Counts with an Excessive Number of Zeros , 2017, Qual. Reliab. Eng. Int..

[24]  Philippe Castagliola,et al.  An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme , 2018, Comput. Ind. Eng..

[25]  Cheryl L. Addy,et al.  Score Tests for Zero-Inflation in Overdispersed Count Data , 2010 .

[26]  W. Chien,et al.  Statistical Process Control for Monitoring the Particles With Excess Zero Counts in Semiconductor Manufacturing , 2019, IEEE Transactions on Semiconductor Manufacturing.

[27]  Aamir Saghir,et al.  Control Charts for Dispersed Count Data: An Overview , 2015, Qual. Reliab. Eng. Int..

[28]  Douglas C. Montgomery,et al.  Process monitoring for multiple count data using generalized linear model-based control charts , 2003 .

[29]  Muhammad Amin,et al.  GLM-based control charts for the inverse Gaussian distributed response variable , 2020, Quality and Reliability Eng. Int..

[30]  Victor H. Lachos,et al.  On estimation and influence diagnostics for zero-inflated negative binomial regression models , 2011, Comput. Stat. Data Anal..

[31]  J. Hinde,et al.  A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives , 2001, Biometrics.

[32]  M. Falk,et al.  The art of attracting international conferences to European cities , 2018 .