A discrete uniformization theorem for polyhedral surfaces II

A discrete conformality for hyperbolic polyhedral surfaces is introduced in this paper. This discrete conformality is shown to be computable. It is proved that each hyperbolic polyhedral metric on a closed surface is discrete conformal to a unique hyperbolic polyhedral metric with a given discrete curvature satisfying Gauss-Bonnet formula. Furthermore, the hyperbolic polyhedral metric with given curvature can be obtained using a discrete Yamabe flow with surgery. In particular, each hyperbolic polyhedral metric on a closed surface with negative Euler characteristic is discrete conformal to a unique hyperbolic metric.

[1]  Hirotaka Akiyoshi Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein-Penner’s method , 2000 .

[2]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[3]  M. Roček,et al.  The quantization of Regge calculus , 1984 .

[4]  Triangulating Teichmüller Space Using the Ricci Flow , 2004 .

[5]  Feng Luo Rigidity of polyhedral surfaces, II , 2014 .

[6]  Sergey Fomin,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .

[7]  A Chiarenza,et al.  A view from above. , 1974, Oral implantology.

[8]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[9]  P. Lu,et al.  A note on uniformization of riemann surfaces by ricci flow , 2005, math/0505163.

[10]  Gregory Leibon Characterizing the Delaunay decompositions of compact hyperbolic surfaces , 2001, math/0103174.

[11]  W. Fenchel Elementary Geometry in Hyperbolic Space , 1989 .

[12]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[13]  Howard Masur,et al.  Hausdorff dimension of sets of nonergodic measured foliations , 1991 .

[14]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[15]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[16]  Ren Guo,et al.  Rigidity of polyhedral surfaces, II , 2006, math/0612714.

[17]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[18]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[19]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces , 2013, Journal of Differential Geometry.

[20]  AN ANALOGUE OF PTOLEMY'S THEOREM AND ITS CONVERSE IN HYPERBOLIC GEOMETRY , 1970 .

[21]  D. Sullivan Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension $3$ fibrées sur $S^1$ , 1981 .

[22]  D. Epstein,et al.  Natural triangulations associated to a surface , 1988 .

[24]  L. Mosher Tiling the projective foliation space of a punctured surface , 1988 .

[25]  F. W. Warner,et al.  Existence and Conformal Deformation of Metrics With Prescribed Gaussian and Scalar Curvatures , 1975 .

[26]  Polyhedral hyperbolic metrics on surfaces , 2008, 0801.0538.

[27]  Kenneth Stephenson,et al.  Introduction to Circle Packing: The Theory of Discrete Analytic Functions , 2005 .

[28]  JASON DEBLOIS,et al.  The Delaunay tessellation in hyperbolic space , 2013, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  A. Beardon The Geometry of Discrete Groups , 1995 .

[30]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[31]  Feng Luo,et al.  Rigidity of Polyhedral Surfaces , 2006 .

[32]  R. Penner The decorated Teichmüller space of punctured surfaces , 1987 .

[33]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[34]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .