The transcendental eigenvalue problem and its application in system identification

[1]  R. Gadelrab,et al.  Free Vibration of a Stepped Composite Timoshenko Cantilever Beam , 1995 .

[2]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[3]  K. Weiss Vibration Problems in Engineering , 1965, Nature.

[4]  Yitshak M. Ram,et al.  Pole-Zero Assignment of Vibratory Systems by State Feedback Control , 1998 .

[5]  J. Paine,et al.  A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .

[6]  A N Singh,et al.  Dynamic absorption in a vibrating beam , 2003 .

[7]  G. M. L. Gladwell,et al.  Reconstruction of a mass-spring system from spectral data II: Experiment , 1995 .

[8]  Mark S. Lake,et al.  Buckling and vibration analysis of a simply supported column with a piecewise constant cross section , 1991 .

[9]  V. Barcilon,et al.  A two-dimensional inverse eigenvalue problem , 1990 .

[10]  C. Bert,et al.  The behavior of structures composed of composite materials , 1986 .

[11]  Frederick A. Just,et al.  Damage Detection Based on the Geometric Interpretation of the Eigenvalue Problem , 1997 .

[12]  Y. Ram Inverse mode problems for the discrete model of a vibrating beam , 1994 .

[13]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[14]  V Barcilon Sufficient conditions for the solution of the inverse problem for a vibrating beam , 1987 .

[15]  John E. Mottershead,et al.  ON THE ZEROS OF STRUCTURAL FREQUENCY RESPONSE FUNCTIONS AND THEIR SENSITIVITIES , 1998 .

[16]  John E. Mottershead,et al.  Vibration nodes, and the cancellation of poles and zeros by unit-rank modifications to structures , 1999 .

[17]  A. C. Nilsson,et al.  PREDICTION AND MEASUREMENT OF SOME DYNAMIC PROPERTIES OF SANDWICH STRUCTURES WITH HONEYCOMB AND FOAM CORES , 2002 .

[18]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[19]  Robert Y. Liang,et al.  Detection of cracks in beam structures using measurements of natural frequencies , 1991 .

[20]  David J. Ewins,et al.  MODAL TESTING USING A SCANNING LASER DOPPLER VIBROMETER , 1999 .

[21]  A. P,et al.  Mechanical Vibrations , 1948, Nature.

[22]  Sylvan Elhay,et al.  An Inverse Eigenvalue Problem for the Symmetric Tridiagonal Quadratic Pencil with Application to Damped Oscillatory Systems , 1996, SIAM J. Appl. Math..

[23]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[24]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[25]  Victor Barcilon,et al.  Inverse Problem for the Vibrating Beam in the Free-Clamped Configuration , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[27]  Shiva Sander Tavallaey Wave propagation in sandwich structure , 2001 .

[28]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[29]  Yitshak M. Ram,et al.  Transcendental Eigenvalue Problem and Its Applications , 2002 .

[30]  Shmuel Friedland The reconstruction of a symmetric matrix from the spectral data , 1979 .

[31]  Sylvan Elhay,et al.  The theory of a multi-degree-of-freedom dynamic absorber , 1996 .

[32]  D. Logan A First Course in the Finite Element Method , 2001 .

[33]  H. Saunders,et al.  Mechanical Signature Analysis—Theory and Applications , 1988 .

[34]  M. Chu Numerical methods for inverse singular value problems3 , 1992 .

[35]  I. Elishakoff Inverse buckling problem for inhomogeneous columns , 2001 .

[36]  G. Gladwell The inverse problem for the Euler-Bernoulli beam , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  T. Yokoyama,et al.  Vibration analysis of edge-cracked beams using a line-spring model , 1998 .

[38]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[39]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[40]  F. Williams,et al.  Reliable use of determinants to solve non-linear structural eigenvalue problems efficiently , 1988 .

[41]  Yeoshua Frostig,et al.  Bending of sandwich beams with transversely flexible core , 1990 .

[42]  F. H. Jackson,et al.  Analytical Methods in Vibrations , 1967 .

[43]  A. Chate,et al.  Identification of elastic properties of laminates based on experiment design , 2001 .

[44]  Charles R. Farrar,et al.  A summary review of vibration-based damage identification methods , 1998 .

[45]  Yuri A. Melnikov,et al.  Influence Functions and Matrices , 1998 .

[46]  Nikos A. Aspragathos,et al.  Identification of crack location and magnitude in a cantilever beam from the vibration modes , 1990 .

[47]  J. Banerjee Explicit analytical expressions for frequency equation and mode shapes of composite beams , 2001 .

[48]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[49]  J. Whitney Structural Analysis of Laminated Anisotropic Plates , 1987 .

[50]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[51]  W. Thomson Theory of vibration with applications , 1965 .

[52]  Yitshak M. Ram Inverse Eigenvalue Problem for a Modified Vibrating System , 1993, SIAM J. Appl. Math..

[53]  Richard W. Hamming,et al.  Numerical Methods for Scientists and Engineers , 1962 .

[54]  Serge Abrate,et al.  Vibration of non-uniform rods and beams , 1995 .

[55]  Alston S. Householder,et al.  Some Inverse Characteristic Value Problems , 1956, JACM.

[56]  Sylvan Elhay,et al.  The construction of band symmetric models for vibratory systems from modal analysis data , 1995 .

[57]  Wei H. Yang,et al.  A method for eigenvalues of sparse λ-matrices , 1983 .

[58]  Y. Ram,et al.  Constructing the shape of a rod from eigenvalues , 1998 .

[59]  H. Gottlieb,et al.  Isospectral Euler-Bernoulli beams with continuous density and rigidity functions , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  G. Gladwell The inverse problem for the vibrating beam , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  G. M. L. Gladwell,et al.  Reconstruction of a mass-spring system from spectral data i: theory , 1995 .

[62]  S. Timoshenko Theory of Elastic Stability , 1936 .

[63]  Yitshak M. Ram,et al.  An Inverse Mode Problem for the Continuous Model of an Axially Vibrating Rod , 1994 .

[64]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[65]  Moshe Eisenberger,et al.  Exact longitudinal vibration frequencies of a variable cross-section rod , 1991 .

[66]  D. S. Chehil,et al.  Determination of natural frequencies of a beam with varying section properties , 1987 .

[67]  Yitshak M. Ram,et al.  Dynamic Absorption by Passive and Active Control , 2000 .

[68]  J. R. Banerjee,et al.  Free vibration of composite beams - An exact method using symbolic computation , 1995 .

[69]  Yitshak M. Ram,et al.  Physical parameters reconstruction of a free-free mass-spring system from its spectra , 1992 .