Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop

[1]  Michael Glenister,et al.  SANCDB: an update on South African natural compounds and their readily available analogs , 2021, Journal of Cheminformatics.

[2]  Stefan Verhoeven,et al.  Paired Omics Data Platform , 2021 .

[3]  J. Geiger,et al.  Possible Therapeutic Use of Natural Compounds Against COVID-19 , 2021, Journal of cellular signaling.

[4]  Elizabeth I. Parkinson,et al.  A community resource for paired genomic and metabolomic data mining , 2021, Nature Chemical Biology.

[5]  José L. Medina-Franco,et al.  Epigenetic Target Profiler: A Web Server to Predict Epigenetic Targets of Small Molecules , 2021, J. Chem. Inf. Model..

[6]  Kai Blin,et al.  The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes , 2020, Nucleic Acids Res..

[7]  Stefan Günther,et al.  StreptomeDB 3.0: an updated compendium of streptomycetes natural products , 2020, Nucleic Acids Res..

[8]  Mehmet Aziz Yirik,et al.  COCONUT online: Collection of Open Natural Products database , 2020, Journal of Cheminformatics.

[9]  S. Günther,et al.  SeMPI 2.0—A Web Server for PKS and NRPS Predictions Combined with Metabolite Screening in Natural Product Databases , 2020, Metabolites.

[10]  U. Norinder,et al.  Skin Doctor CP: Conformal Prediction of the Skin Sensitization Potential of Small Organic Molecules , 2020, Chemical research in toxicology.

[11]  Norberto Sánchez-Cruz,et al.  Fragment Library of Natural Products and Compound Databases for Drug Discovery † , 2020, Biomolecules.

[12]  D. Riewe,et al.  Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. , 2020, Plant, cell & environment.

[13]  A. Blom,et al.  COVID‐19 policies in Germany and their social, political, and psychological consequences , 2020, European policy analysis.

[14]  Kiran K. Telukunta,et al.  Pharmacoinformatic Investigation of Medicinal Plants from East Africa , 2020, Molecular informatics.

[15]  S. Unger,et al.  Student Attitudes Towards Online Education during the COVID-19 Viral Outbreak of 2020: Distance Learning in a Time of Social Distance , 2020, International Journal of Technology in Education and Science.

[16]  Jeffrey A van Santen,et al.  Microbial natural product databases: moving forward in the multi-omics era. , 2020, Natural product reports.

[17]  Gennady M Verkhivker,et al.  Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 Mpro , 2020, J. Chem. Inf. Model..

[18]  B. Gerber,et al.  Rewarding compounds identified from the medicinal plant Rhodiola rosea , 2020, Journal of Experimental Biology.

[19]  J. Kirchmair,et al.  GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics , 2020, Chemical research in toxicology.

[20]  C. Steinbeck,et al.  Too sweet: cheminformatics for deglycosylation in natural products , 2020, Journal of Cheminformatics.

[21]  Patrick Aloy,et al.  Bioactivity descriptors for uncharacterized compounds , 2020, bioRxiv.

[22]  Victor Chukwudi Osamor,et al.  OsamorSoft: clustering index for comparison and quality validation in high throughput dataset , 2020, Journal of Big Data.

[23]  Anton Nekrutenko,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update , 2020, Nucleic Acids Res..

[24]  Özlem Tastan Bishop,et al.  Determining the unbinding events and conserved motions associated with the pyrazinamide release due to resistance mutations of Mycobacterium tuberculosis pyrazinamidase , 2020, Computational and structural biotechnology journal.

[25]  K. Franke,et al.  Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data , 2020, Proceedings of the National Academy of Sciences.

[26]  M. Kerres Against All Odds: Education in Germany Coping with Covid-19 , 2020, Postdigital Science and Education.

[27]  Maria Sorokina,et al.  Review on natural products databases: where to find data in 2020 , 2020, Journal of Cheminformatics.

[28]  David J Newman,et al.  Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. , 2020, Journal of natural products.

[29]  Olivier Sheik Amamuddy,et al.  Integrated Computational Approaches and Tools for Allosteric Drug Discovery , 2020, International journal of molecular sciences.

[30]  Daniel Svozil,et al.  NERDD: a web portal providing access to in silico tools for drug discovery , 2019, Bioinform..

[31]  Christine M. Aceves,et al.  Reproducible molecular networking of untargeted mass spectrometry data using GNPS , 2019, Nature Protocols.

[32]  Norberto Sánchez-Cruz,et al.  Functional group and diversity analysis of BIOFACQUIM: A Mexican natural product database , 2019, F1000Research.

[33]  Gennady M Verkhivker,et al.  Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study of Plasmodium falciparum Hsp70s , 2019, International journal of molecular sciences.

[34]  Simon Rogers,et al.  Feature-Based Molecular Networking in the GNPS Analysis Environment , 2019, Nature Methods.

[35]  P. Aloy,et al.  Extending the small molecule similarity principle to all levels of biology , 2019, bioRxiv.

[36]  Christoph Steinbeck,et al.  NaPLeS: a natural products likeness scorer—web application and database , 2019, Journal of Cheminformatics.

[37]  Daniel Svozil,et al.  FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes , 2019, J. Chem. Inf. Model..

[38]  Daniel Svozil,et al.  GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism , 2019, Front. Chem..

[39]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[40]  Madeleine Ernst,et al.  Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. , 2019, The Plant journal : for cell and molecular biology.

[41]  Johannes Kirchmair,et al.  NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules , 2019, Biomolecules.

[42]  Johannes Kirchmair,et al.  Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters , 2019, J. Chem. Inf. Model..

[43]  David S. Wishart,et al.  BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification , 2019, Journal of Cheminformatics.

[44]  Arnold Amusengeri,et al.  Discorhabdin N, a South African Natural Compound, for Hsp72 and Hsc70 Allosteric Modulation: Combined Study of Molecular Modeling and Dynamic Residue Network Analysis , 2019, Molecules.

[45]  J. Medina-Franco,et al.  Functional group and diversity analysis of BIOFACQUIM: A Mexican natural product database. , 2019, F1000Research.

[46]  David L. Penkler,et al.  Modulation of Human Hsp90α Conformational Dynamics by Allosteric Ligand Interaction at the C-Terminal Domain , 2018, bioRxiv.

[47]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[48]  Adriano D. Andricopulo,et al.  NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity , 2017, Scientific Reports.

[49]  Wolfgang Sippl,et al.  NANPDB: A Resource for Natural Products from Northern African Sources. , 2017, Journal of natural products.

[50]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching , 2017, Journal of Cheminformatics.

[51]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[52]  Kai Blin,et al.  plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters , 2016, bioRxiv.

[53]  Tilmann Weber,et al.  The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.

[54]  Rowan Hatherley,et al.  SANCDB: a South African natural compound database , 2015, Journal of Cheminformatics.

[55]  A. Harvey,et al.  The re-emergence of natural products for drug discovery in the genomics era , 2015, Nature Reviews Drug Discovery.

[56]  Jin-Ming Gao,et al.  Natural products as sources of new fungicides (I): synthesis and antifungal activity of Kakuol derivatives against phytopathogenic fungi , 2014 .

[57]  Lars Ridder,et al.  Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa. , 2014, Mass spectrometry.

[58]  Adriano D Andricopulo,et al.  Development of a natural products database from the biodiversity of Brazil. , 2013, Journal of natural products.

[59]  Lars Ridder,et al.  Substructure-based annotation of high-resolution multistage MS(n) spectral trees. , 2012, Rapid communications in mass spectrometry : RCM.

[60]  Timothy M. D. Ebbels,et al.  Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data , 2010, Bioinform..

[61]  Steffen Neumann,et al.  Highly sensitive feature detection for high resolution LC/MS , 2008, BMC Bioinformatics.

[62]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[63]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[64]  Doug Valentine,et al.  Distance Learning: Promises, Problems, and Possibilities , 2002 .

[65]  José Bidarra,et al.  Current Developments and Best Practice in Open and Distance Learning , 2000 .