Manipulation of magnetically labeled and unlabeled cells with mobile magnetic traps.

A platform of discrete microscopic magnetic elements patterned on a surface offers dynamic control over the motion of fluid-borne cells by reprogramming the magnetization within the magnetic bits. T-lymphocyte cells tethered to magnetic microspheres and untethered leukemia cells are remotely manipulated and guided along desired trajectories on a silicon surface by directed forces with average speeds up to 20 microm/s. In addition to navigating cells, the microspheres can be operated from a distance to push biological and inert entities and act as local probes in fluidic environments.

[1]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[2]  Dieter Blaas,et al.  Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells , 2004, Electrophoresis.

[3]  S. Farag,et al.  A novel high throughput immunomagnetic cell sorting system for potential clinical scale depletion of T cells for allogeneic stem cell transplantation. , 2007, Experimental hematology.

[4]  Ruben Godoy-Silva,et al.  Acute hydrodynamic forces and apoptosis: A complex question , 2007, Biotechnology and bioengineering.

[5]  The Manipulation of Single Biomolecules , 2001 .

[6]  Ondrej Hovorka,et al.  Arranging matter by magnetic nanoparticle assemblers , 2005 .

[7]  M. Cich,et al.  Generation-recombination low-frequency noise signatures in GaAs metal–semiconductor field-effect transistors on laterally oxidized AlAs , 2003 .

[8]  J. Chalmers,et al.  Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. , 2000, Biotechnology and bioengineering.

[9]  Tom H Johansen,et al.  Localized and delocalized motion of colloidal particles on a magnetic bubble lattice. , 2007, Physical review letters.

[10]  Hideki T. Miyazaki,et al.  Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope , 2000 .

[11]  F F Becker,et al.  Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. , 1999, Analytical chemistry.

[12]  H. Andersson,et al.  Microfluidic devices for cellomics: a review , 2003 .

[13]  Michael J. Donahue,et al.  Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform , 2005 .

[14]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[15]  N. Sundararajan,et al.  Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels , 2004, Journal of Microelectromechanical Systems.

[16]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[17]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[18]  R. Pethig,et al.  Electromanipulation and separation of cells using travelling electric fields , 1996 .

[19]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[20]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[21]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[22]  D. Grier A revolution in optical manipulation , 2003, Nature.

[23]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[24]  Hans M. Hertz,et al.  Standing-wave Acoustic Trap For Nonintrusive Positioning of Microparticles , 1995 .

[25]  Wesley I. Sundquist,et al.  Good to CU , 2003, Nature.

[26]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[27]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[28]  J. Chalmers,et al.  Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells , 2009, Biotechnology and bioengineering.

[29]  M. Donahue,et al.  Integrated microfluidic isolation platform for magnetic particle manipulation in biological systems , 2004 .