Discrimination of Sugarcane Varieties by Remote Sensing: A Review of Literature
暂无分享,去创建一个
Fabrízzio Alphonsus A. M. N. Soares | Priscila M. Kai | Ronaldo Martins da Costa | Deborah S. A. Fernandes | Juliana Paula Felix | Bruna M. de Oliveira | Bruna M. de Oliveira | Fabrízzio Soares | J. P. Félix | D. S. A. Fernandes | R. M. Costa | D. Fernandes
[1] Armando Apan,et al. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .
[2] Xianggui Qu,et al. Multivariate Data Analysis , 2007, Technometrics.
[3] Nicolas Baghdadi,et al. Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island , 2009 .
[4] Murillo-Sandoval,et al. Evaluation of Landsat 7 ETM+ Data for Spectral Discrimination and Classification of Sugarcane Varieties in Colombia , 2011 .
[5] N. R. Rao,et al. RETRACTED ARTICLE: Development of a crop‐specific spectral library and discrimination of various agricultural crop varieties using hyperspectral imagery , 2008 .
[6] Y. L. Everingham,et al. Advanced satellite imagery to classify sugarcane crop characteristics , 2007, Agronomy for Sustainable Development.
[7] Lênio Soares Galvão,et al. The influence of spectral resolution on discriminating Brazilian sugarcane varieties , 2006 .
[8] C. J. Gers,et al. Remotely sensed sugarcane phenological characteristics at Umfolozi South Africa , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[9] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[10] A. Formaggio,et al. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data , 2005 .
[11] L. E. Vicente,et al. Sensoriamento remoto: conceitos básicos e aplicações na agricultura de precisão. , 2014 .
[12] P. Zimba,et al. DISCRIMINATION OF SUGARCANE VARIETIES WITH PIGMENT PROFILES AND HIGH RESOLUTION , HYPERSPECTRAL LEAF REFLECTANCE DATA , 2009 .
[13] Daniel Garbellini Duft,et al. Sentinel-2B and Random Forest algorithm potential for sugarcane varieties identification , 2019, GEOINFO.
[14] R. Tibshirani,et al. Penalized Discriminant Analysis , 1995 .
[15] Philippe Courcoux,et al. Stepwise canonical discriminant analysis of continuous digitalized signals: Application to chromatograms of wheat proteins , 1990 .
[16] Armando Apan,et al. Spectral discrimination and classification of sugarcane varieties using EO-1 hyperion hyperspectral imagery , 2004 .
[17] Charles E. Heckler,et al. Applied Multivariate Statistical Analysis , 2005, Technometrics.
[18] S. Ghosh,et al. Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data , 2007, Precision Agriculture.
[19] E. J. Schmidt,et al. Application of remote sensing technology in the SA sugar industry: review of recent research findings. , 2000 .
[20] Alvin C. Rencher,et al. A Review Of “Methods of Multivariate Analysis, Second Edition” , 2005 .
[21] S. Freitas,et al. Pre-harvest sugarcane burning emission inventories based on remote sensing data in the state of São Paulo, Brazil , 2014 .
[22] Daniel Alves Aguiar,et al. Remote Sensing Images in Support of Environmental Protocol: Monitoring the Sugarcane Harvest in São Paulo State, Brazil , 2011, Remote. Sens..
[23] S. Zolnier,et al. Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods , 2018, The Journal of Agricultural Science.
[24] David Escobar,et al. Soil Salinity Effects on Crop Growth and Yield - Illustration of an Analysis and Mapping Methodology for Sugarcane , 1996 .
[25] José Alexandre Melo Demattê,et al. Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data , 2006 .