Primary structure of the α-subunit of Torpedo californica (Na+ + K+)ATPase deduced from cDNA sequence

[1]  G. Saccomani,et al.  Structural relatedness of three ion-transport adenosine triphosphatases around their active sites of phosphorylation. , 1985, The Journal of biological chemistry.

[2]  L. K. Lane,et al.  The amino acid sequence of the fluorescein isothiocyanate reactive site of lamb and rat kidney Na+- and K+-dependent ATPase. , 1984, Biochemical and biophysical research communications.

[3]  M. Kawamura,et al.  Solubilization and purification of Artemia salina (Na,K)-activated ATPase and NH2-terminal amino acid sequence of its larger subunit. , 1984, The Journal of biological chemistry.

[4]  D. Hawke,et al.  The amino acid sequence of a fluorescein-labeled peptide from the active site of (Na,K)-ATPase. , 1984, The Journal of biological chemistry.

[5]  E. Dorus,et al.  Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Nicholas Purification of the membrane-spanning tryptic peptides of the alpha polypeptide from sodium and potassium ion activated adenosinetriphosphatase labeled with 1-tritiospiro[adamantane-4,3'-diazirine]. , 1984, Biochemistry.

[7]  K. Omori,et al.  Isolation of the α and β Subunits of Canine (Na+,K+)ATPase by Using SDS-PAGE and Lectin-Sepharose , 1983 .

[8]  R. Sharkey Lactoperoxidase-catalyzed iodination of sodium and potassium ion-activated adenosine triphosphatase in the Madin-Darby canine kidney epithelial cell line and canine renal membranes. , 1983, Biochimica et biophysica acta.

[9]  J. H. Collins,et al.  Tryptic digest of the α subunit of lamb kidney (Na+ + K+)-ATPase , 1983 .

[10]  M. O'Connell Exclusive labeling of the extracytoplasmic surface of sodium ion and potassium ion activated adenosinetriphosphatase and a determination of the distribution of surface area across the bilayer. , 1982, Biochemistry.

[11]  Takashi Miyata,et al.  Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence , 1982, Nature.

[12]  P. L. Jørgensen Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. , 1982, Biochimica et biophysica acta.

[13]  P. L. Jørgensen,et al.  Evidence for the organization of the transmembrane segments of (Na,K)-ATPase based on labeling lipid-embedded and surface domains of the alpha-subunit. , 1982, The Journal of biological chemistry.

[14]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[15]  K. Itakura,et al.  Solid phase synthesis of polynucleotides. VI. Further studies on polystyrene copolymers for the solid support. , 1982, Nucleic acids research.

[16]  H. Okayama,et al.  High-efficiency cloning of full-length cDNA , 1982, Molecular and cellular biology.

[17]  S. Nakanishi,et al.  Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin , 1982, Nature.

[18]  L. Hood,et al.  A gas-liquid solid phase peptide and protein sequenator. , 1981, The Journal of biological chemistry.

[19]  J. Kyte Molecular considerations relevant to the mechanism of active transport , 1981, Nature.

[20]  N. Green,et al.  The primary structure of the calcium ion-transporting adenosine triphosphatase protein of rabbit skeletal sarcoplasmic reticulum. Peptides derived from digestion with cyanogen bromide, and the sequences of three long extramembranous segments. , 1980, The Biochemical journal.

[21]  L. Hokin,et al.  Microheterogeneity of the glycoprotein subunit of the (sodium + potassium)-activated adenosine triphosphatase from the electroplax of Electrophorus electricus. , 1979, Biochemical and biophysical research communications.

[22]  R. Weinstock,et al.  Intragenic DNA spacers interrupt the ovalbumin gene. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[23]  N. Proudfoot,et al.  3′ Non-coding region sequences in eukaryotic messenger RNA , 1976, Nature.

[24]  T. Smith,et al.  Sodium- and potassium-activated adenosine triphosphatase of the nasal salt gland of the duck (Anas platyrhynchos). Purification, characterization, and NH2-terminal amino acid sequence of the phosphorylating polypeptide. , 1976, The Journal of biological chemistry.

[25]  B. Dobberstein,et al.  Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components , 1975, The Journal of cell biology.

[26]  P. L. Jørgensen,et al.  Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. , 1974, Biochimica et biophysica acta.

[27]  S. Kume,et al.  Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. , 1972, The Journal of biological chemistry.

[28]  R. Post Structural Aspects of Na.K-ATPase , 1983 .

[29]  I. Glynn,et al.  Existence and Role of Occluded-lon Forms of Na,K-ATPase , 1983 .

[30]  S. L. Bonting,et al.  Transport adenosine triphosphatases: properties and functions. , 1981, Physiological reviews.

[31]  L. Cantley Structure and Mechanism of the (Na,K)-ATPase , 1981 .

[32]  W. Gilbert,et al.  Sequencing end-labeled DNA with base-specific chemical cleavages. , 1980, Methods in enzymology.

[33]  P. Y. Chou,et al.  Empirical predictions of protein conformation. , 1978, Annual review of biochemistry.

[34]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .