Regularization and Semi-supervised Learning on Large Graphs

We consider the problem of labeling a partially labeled graph. This setting may arise in a number of situations from survey sampling to information retrieval to pattern recognition in manifold settings. It is also of potential practical importance, when the data is abundant, but labeling is expensive or requires human assistance.

[1]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[2]  Luc Devroye,et al.  Distribution-free performance bounds for potential function rules , 1979, IEEE Trans. Inf. Theory.

[3]  Luc Devroye,et al.  Distribution-free inequalities for the deleted and holdout error estimates , 1979, IEEE Trans. Inf. Theory.

[4]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[5]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[6]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[7]  André Elisseeff,et al.  Algorithmic Stability and Generalization Performance , 2000, NIPS.

[8]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[9]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[10]  Mikhail Belkin,et al.  Using Manifold Stucture for Partially Labeled Classification , 2002, NIPS.

[11]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[12]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[13]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[14]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[15]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[16]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[17]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.