Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing

We describe a method for improving coherent control through the use of detailed knowledge of the system’s Hamiltonian. Precise unitary transformations were obtained by strongly modulating the system’s dynamics to average out unwanted evolution. With the aid of numerical search methods, pulsed irradiation schemes are obtained that perform accurate, arbitrary, selective gates on multiqubit systems. Compared to low power selective pulses, which cannot average out all unwanted evolution, these pulses are substantially shorter in time, thereby reducing the effects of relaxation. Liquid-state nuclear magnetic resonance techniques on homonuclear spin systems are used to demonstrate the accuracy of these gates both in simulation and experiment. Simulations of the coherent evolution of a three-qubit system show that the control sequences faithfully implement the unitary operations, typically yielding gate fidelities on the order of 0.999 and, for some sequences, up to 0.9997. The experimentally determined density ...

[1]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[2]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[3]  Timothy F. Havel,et al.  NMR analog of the quantum disentanglement eraser. , 2001, Physical Review Letters.

[4]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[5]  P. Bucksbaum,et al.  Coherent control using adaptive learning algorithms , 2000, quant-ph/0008029.

[6]  S. Lloyd,et al.  Implementation of the quantum Fourier transform. , 1999, Physical review letters.

[7]  Steffen,et al.  Simultaneous soft pulses applied at nearby frequencies , 2000, Journal of magnetic resonance.

[8]  Klaus Mølmer,et al.  Ion Trap Quantum Computer with Bichromatic Light , 2000 .

[9]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[10]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[11]  Jonathan A. Jones,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[12]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[13]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[14]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[15]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[16]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[17]  Jonathan A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[18]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[20]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[21]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  John F. Huth,et al.  Multiple-frequency decoupling in selective correlation spectroscopy , 1996 .

[23]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[24]  Sorensen,et al.  Generalized bound on quantum dynamics: Efficiency of unitary transformations between non-Hermitian states. , 1995, Physical Review Letters.

[25]  D. Cory A DANTE-Based Method for Radiofrequency-Field Selection , 1993 .

[26]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[27]  G. Drobny,et al.  Experimental demonstrations of shaped pulses for narrowband inversion of uncoupled and coupled systems , 1992 .

[28]  Richard L. Magin,et al.  Feedback control of the nuclear magnetization state: experimental results , 1992, IEEE Trans. Medical Imaging.

[29]  Geoffrey Bodenhausen,et al.  Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators , 1992 .

[30]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[31]  Peirce,et al.  Optimal control of uncertain quantum systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[32]  W S Warren,et al.  Effects of pulse shaping in laser spectroscopy and nuclear magnetic resonance , 1988, Science.

[33]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[34]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[35]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[36]  R. R. Ernst,et al.  Analytical theory of composite pulses , 1985 .

[37]  A. Pines,et al.  Broadband population inversion in solid state NMR , 1984 .

[38]  A. Zewail,et al.  Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications , 1983 .

[39]  P. E. Hanley,et al.  Localization of metabolites in animals using 31P topical magnetic resonance , 1980, Nature.

[40]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[41]  A. Haught Lasers and Their Applications to Physical Chemistry , 1968 .

[42]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[43]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[44]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[45]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[46]  I. I. Rabi,et al.  The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments The Magnetic Moments of 3 Li 6 , 3 Li 7 and 9 F 19 , 1939 .