Differential gene expression graphs: A data structure for classification in DNA microarrays

This paper proposes an innovative data structure to be used as a backbone in designing microarray phenotype sample classifiers. The data structure is based on graphs and it is built from a differential analysis of the expression levels of healthy and diseased tissue samples in a microarray dataset. The proposed data structure is built in such a way that, by construction, it shows a number of properties that are perfectly suited to address several problems like feature extraction, clustering, and classification.

[1]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[2]  E. Wolski,et al.  Normalization strategies for cDNA microarrays. , 2000, Nucleic acids research.

[3]  D. Higgins,et al.  Bioinformatics : sequence, structure, and databanks , 2000 .

[4]  Chris H. Q. Ding,et al.  Multi-class protein fold recognition using support vector machines and neural networks , 2001, Bioinform..

[5]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[6]  Thomas A. Darden,et al.  Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method , 2001, Bioinform..

[7]  Francisco Azuaje,et al.  A computational neural approach to support the discovery of gene function and classes of cancer , 2001, IEEE Transactions on Biomedical Engineering.

[8]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[10]  D. Slonim,et al.  Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls , 2001, Genome Biology.

[11]  Michael Q. Zhang,et al.  Current Topics in Computational Molecular Biology , 2002 .

[12]  Heping Zhang,et al.  Cell and tumor classification using gene expression data: Construction of forests , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Gibson,et al.  Microarray Analysis , 2020, Definitions.

[14]  Lucila Ohno-Machado,et al.  An Epicurean learning approach to gene-expression data classification , 2003, Artif. Intell. Medicine.

[15]  David Corne,et al.  Evolutionary Computation In Bioinformatics , 2003 .

[16]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[17]  Ron Shamir,et al.  Artificial Intelligence and Heuristic Methods in Bioinformatics , 2003 .

[18]  N. Camp,et al.  Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States) , 2002, Cancer Causes & Control.

[19]  Chenn-Jung Huang,et al.  Application of Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System , 2004, Neural Processing Letters.

[20]  William Perrizo,et al.  Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis , 2004, J. Biomed. Informatics.

[21]  Stephen T. C. Wong,et al.  Cancer classification and prediction using logistic regression with Bayesian gene selection , 2004, J. Biomed. Informatics.

[22]  Pedro Larrañaga,et al.  GUEST EDITORIAL: Data mining in genomics and proteomics , 2004 .

[23]  Volker Roth,et al.  Bayesian class discovery in microarray datasets , 2004, IEEE Transactions on Biomedical Engineering.

[24]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[25]  Dennis Shasha,et al.  Introduction to Data Mining in Bioinformatics , 2005, Data Mining in Bioinformatics.

[26]  Edward R. Dougherty,et al.  The fundamental role of pattern recognition for gene-expression/microarray data in bioinformatics , 2005, Pattern Recognit..

[27]  Lakhmi C. Jain,et al.  Bioinformatics using computational intelligence paradigms , 2005 .

[28]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[29]  Alfredo Benso,et al.  A graph-based representation of Gene Expression profiles in DNA microarrays , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[30]  Sumeet Dua,et al.  Data Mining for Bioinformatics , 2012 .

[31]  Stephen J. Roberts,et al.  Probabilistic Modeling in Bioinformatics and Medical Informatics , 2010 .