Heparan sulfate proteoglycans and the emergence of neuronal connectivity

[1]  J. Chilton Molecular mechanisms of axon guidance. , 2006, Developmental biology.

[2]  J. Marsh,et al.  The HSPGs Syndecan and Dallylike Bind the Receptor Phosphatase LAR and Exert Distinct Effects on Synaptic Development , 2006, Neuron.

[3]  M. Hengartner,et al.  Syndecan regulates cell migration and axon guidance in C. elegans , 2005, Development.

[4]  K. Zinn,et al.  The Heparan Sulfate Proteoglycan Syndecan Is an In Vivo Ligand for the Drosophila LAR Receptor Tyrosine Phosphatase , 2005, Current Biology.

[5]  A. English,et al.  Axon regeneration in peripheral nerves is enhanced by proteoglycan degradation , 2005, Experimental Neurology.

[6]  S. O. Kolset,et al.  Decreasing the metastatic potential in cancers--targeting the heparan sulfate proteoglycans. , 2005, Current drug targets.

[7]  R. Harrington,et al.  The Two Isoforms of the Caenorhabditis elegans Leukocyte-Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation , 2005, The Journal of Neuroscience.

[8]  Melissa A. Rusch,et al.  A unique role for 6-O sulfation modification in zebrafish vascular development. , 2005, Developmental biology.

[9]  J. Esko,et al.  Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function , 2005, Development.

[10]  P. Carmeliet,et al.  Common mechanisms of nerve and blood vessel wiring , 2005, Nature.

[11]  N. Perrimon,et al.  Developmental cell biology: Heparan sulphate proteoglycans: the sweet side of development , 2005, Nature Reviews Molecular Cell Biology.

[12]  Renato V Iozzo,et al.  Heparan sulfate: a complex polymer charged with biological activity. , 2005, Chemical reviews.

[13]  S. Selleck,et al.  The Heparan Sulfate Proteoglycans Dally-like and Syndecan Have Distinct Functions in Axon Guidance and Visual-System Assembly in Drosophila , 2005, Current Biology.

[14]  J. Klooster,et al.  Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix , 2005, Molecular and Cellular Neuroscience.

[15]  H. M. Geller,et al.  Chondroitin sulfate proteoglycans in neural development and regeneration , 2005, Current Opinion in Neurobiology.

[16]  C. Dumont,et al.  Stimulation of neurite outgrowth in a human nerve scaffold designed for peripheral nerve reconstruction. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  C. Hoogenraad,et al.  LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses , 2005, Nature Neuroscience.

[18]  J. Bixby,et al.  Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin , 2005, Molecular and Cellular Neuroscience.

[19]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[20]  C. Nüsslein-Volhard,et al.  Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer) , 2004, Neuron.

[21]  Michael J. Hansen,et al.  Semaphorin 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate Proteoglycans , 2004, Neuron.

[22]  C. Chien,et al.  When sugars guide axons: insights from heparan sulphate proteoglycan mutants , 2004, Nature Reviews Genetics.

[23]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[24]  M. Labarca,et al.  Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva , 2004, Journal of Cell Science.

[25]  H. Nakada,et al.  Heparan sulphate proteoglycans interact with neurocan and promote neurite outgrowth from cerebellar granule cells. , 2004, The Biochemical journal.

[26]  J. Bixby,et al.  Glycosaminoglycan‐dependent and ‐independent inhibition of neurite outgrowth by agrin , 2004, Journal of neurochemistry.

[27]  D. V. Vactor,et al.  Axonal Heparan Sulfate Proteoglycans Regulate the Distribution and Efficiency of the Repellent Slit during Midline Axon Guidance , 2004, Current Biology.

[28]  O. Hobert,et al.  Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development , 2004, Neuron.

[29]  C. Woolf,et al.  Dynamic changes in glypican‐1 expression in dorsal root ganglion neurons after peripheral and central axonal injury , 2004, The European journal of neuroscience.

[30]  S. Ekker,et al.  Syndecan-2 is essential for angiogenic sprouting during zebrafish development. , 2004, Blood.

[31]  H. Jäckle,et al.  Heparan Sulfate Proteoglycan Syndecan Promotes Axonal and Myotube Guidance by Slit/Robo Signaling , 2004, Current Biology.

[32]  Marc Tessier-Lavigne,et al.  Anterior-Posterior Guidance of Commissural Axons by Wnt-Frizzled Signaling , 2003, Science.

[33]  M. Tessier-Lavigne,et al.  Mammalian Brain Morphogenesis and Midline Axon Guidance Require Heparan Sulfate , 2003, Science.

[34]  E. Dent,et al.  Cytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance , 2003, Neuron.

[35]  A. Wanaka,et al.  Expression pattern of glypican-1 mRNA after brain injury in mice , 2003, Neuroscience Letters.

[36]  D. Leahy,et al.  Netrin Binds Discrete Subdomains of DCC and UNC5 and Mediates Interactions between DCC and Heparin* , 2003, Journal of Biological Chemistry.

[37]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[38]  W. Halfter,et al.  The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. , 2003, Journal of neurobiology.

[39]  J. S. Elam,et al.  Proteoglycan regulation of goldfish retinal explant growth on optic tectal membranes. , 2003, Brain research. Developmental brain research.

[40]  M. Steen,et al.  PerleCan fix your muscle AChEs , 2003, Trends in Neurosciences.

[41]  A. Wanaka,et al.  Slit and glypican‐1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain , 2003, Glia.

[42]  John B. Thomas,et al.  Wnt-mediated axon guidance via the Drosophila Derailed receptor , 2003, Nature.

[43]  Karl G. Johnson,et al.  Receptor protein tyrosine phosphatases in nervous system development. , 2003, Physiological reviews.

[44]  V. Budnik,et al.  The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation , 2002, Cell.

[45]  A. Cukiert,et al.  Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy , 2002, Brain Research Bulletin.

[46]  Marko Kaksonen,et al.  Syndecan-3-Deficient Mice Exhibit Enhanced LTP and Impaired Hippocampus-Dependent Memory , 2002, Molecular and Cellular Neuroscience.

[47]  D. V. Vactor,et al.  Drosophila Liprin-α and the Receptor Phosphatase Dlar Control Synapse Morphogenesis , 2002, Neuron.

[48]  W. Halfter,et al.  Heparan Sulfate Proteoglycans Are Ligands for Receptor Protein Tyrosine Phosphatase σ , 2002, Molecular and Cellular Biology.

[49]  J. Bixby,et al.  A neuronal inhibitory domain in the N-terminal half of agrin. , 2002, Journal of neurobiology.

[50]  D. Van Vactor,et al.  Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. , 2002, Neuron.

[51]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[52]  S. Selleck,et al.  Order out of chaos: assembly of ligand binding sites in heparan sulfate. , 2002, Annual review of biochemistry.

[53]  Atsushi Irie,et al.  Specific heparan sulfate structures involved in retinal axon targeting. , 2002, Development.

[54]  W. Halfter,et al.  Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. , 2002, Molecular and cellular biology.

[55]  J. Sanes,et al.  Induction, assembly, maturation and maintenance of a postsynaptic apparatus , 2001, Nature reviews. Neuroscience.

[56]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[57]  E. Pasquale,et al.  EphB/Syndecan-2 Signaling in Dendritic Spine Morphogenesis , 2001, Neuron.

[58]  L. Pellegrini,et al.  Role of heparan sulfate in fibroblast growth factor signalling: a structural view. , 2001, Current opinion in structural biology.

[59]  J. Esko,et al.  Molecular diversity of heparan sulfate. , 2001, The Journal of clinical investigation.

[60]  G. Barsh,et al.  Transgenic Expression of Syndecan-1 Uncovers a Physiological Control of Feeding Behavior by Syndecan-3 , 2001, Cell.

[61]  Huaiyu Hu Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein , 2001, Nature Neuroscience.

[62]  H. Nader,et al.  Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. , 2000, Biochimica et biophysica acta.

[63]  R. Hoffmann,et al.  Glycosaminoglycan-binding properties and secondary structure of the C-terminus of netrin-1. , 2000, Biochemical and biophysical research communications.

[64]  S. Selleck Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. , 2000, Trends in genetics : TIG.

[65]  C. Bandtlow,et al.  Proteoglycans in the developing brain: new conceptual insights for old proteins. , 2000, Physiological reviews.

[66]  M. Sheng,et al.  Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development , 1999, The Journal of Neuroscience.

[67]  S. Carr,et al.  Mammalian Homologues of the Drosophila Slit Protein Are Ligands of the Heparan Sulfate Proteoglycan Glypican-1 in Brain* , 1999, The Journal of Biological Chemistry.

[68]  M. Götte,et al.  Functions of cell surface heparan sulfate proteoglycans. , 1999, Annual review of biochemistry.

[69]  R. Weinberg,et al.  Direct Interaction of CASK/LIN-2 and Syndecan Heparan Sulfate Proteoglycan and Their Overlapping Distribution in Neuronal Synapses , 1998, The Journal of cell biology.

[70]  K. Bennett,et al.  Deleted in Colorectal Carcinoma (DCC) Binds Heparin via Its Fifth Fibronectin Type III Domain* , 1997, The Journal of Biological Chemistry.

[71]  F. Lottspeich,et al.  Recombinant fish neurotrophin-6 is a heparin-binding glycoprotein: implications for a role in axonal guidance. , 1997, The Biochemical journal.

[72]  C. Holt,et al.  Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. , 1997, Development.

[73]  U. Lindahl,et al.  Domain Structure of Heparan Sulfates from Bovine Organs* , 1996, The Journal of Biological Chemistry.

[74]  S. Koizumi,et al.  Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. , 1996, Journal of biochemistry.

[75]  T. Jessell,et al.  The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6 , 1994, Cell.

[76]  J. Denburg,et al.  A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach , 1992, Neuron.

[77]  L. Reichardt,et al.  Extracellular matrix molecules and their receptors: functions in neural development. , 1991, Annual review of neuroscience.

[78]  J. Rothberg,et al.  slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. , 1990, Genes & development.

[79]  R. Saxod,et al.  Influence of glycosaminoglycans on neurite morphology and outgrowth patterns in vitro , 1989, International Journal of Developmental Neuroscience.

[80]  E. Chernoff The role of endogenous heparan sulfate proteoglycan in adhesion and neurite outgrowth from dorsal root ganglia. , 1988, Tissue & cell.

[81]  H. Nader,et al.  Structural differences of heparan sulfates according to the tissue and species of origin. , 1983, Biochemical and biophysical research communications.

[82]  C. Dietrich,et al.  Distribution of sulfated mucopolysaccharides in invertebrates. , 1977, The Journal of biological chemistry.

[83]  R. Jeanloz,et al.  Acid Polysaccharides from Invertebrate Connective Tissue: Phylogenetic Aspects , 1969, Science.

[84]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .