Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T

[1]  A. Awasthi,et al.  Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI. , 2017, Magnetic resonance imaging.

[2]  B. Jiang,et al.  Apparent diffusion coefficient maps obtained from high b value diffusion-weighted imaging in the preoperative evaluation of gliomas at 3T: comparison with standard b value diffusion-weighted imaging , 2017, European Radiology.

[3]  Chung-Ming Lo,et al.  Quantitative glioma grading using transformed gray-scale invariant textures of MRI , 2017, Comput. Biol. Medicine.

[4]  Chung-Ming Lo,et al.  Computer-aided grading of gliomas based on local and global MRI features , 2017, Comput. Methods Programs Biomed..

[5]  H. Almassry,et al.  Preoperative glioma grading by MR diffusion and MR spectroscopic imaging , 2016 .

[6]  H. Tantawy,et al.  High grade gliomas: The role of dynamic contrast-enhanced susceptibility-weighted perfusion MRI and proton MR spectroscopic imaging in differentiating grade III from grade IV , 2016 .

[7]  N. Chalabi,et al.  Potential role of quantitative MRI assessment in differentiating high from low-grade gliomas , 2016 .

[8]  Massimo Caulo,et al.  Data-driven grading of brain gliomas: a multiparametric MR imaging study. , 2014, Radiology.

[9]  A. Server,et al.  Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T. , 2014, European journal of radiology.

[10]  Z. Song,et al.  Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics , 2013, Clinical Neurology and Neurosurgery.

[11]  Daniel M. Spielman,et al.  Utility of multiparametric 3-T MRI for glioma characterization , 2013, Neuroradiology.

[12]  A. Škoch,et al.  Potential of MR spectroscopy for assessment of glioma grading , 2013, Clinical Neurology and Neurosurgery.

[13]  Max Wintermark,et al.  Perfusion MRI: the five most frequently asked clinical questions. , 2013, AJR. American journal of roentgenology.

[14]  G. Winston The physical and biological basis of quantitative parameters derived from diffusion MRI. , 2012, Quantitative imaging in medicine and surgery.

[15]  Guy Cosnard,et al.  Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. , 2012, Journal of neuroradiology. Journal de neuroradiologie.

[16]  Vinod Kumar,et al.  A dual neural network ensemble approach for multiclass brain tumor classification , 2012, International journal for numerical methods in biomedical engineering.

[17]  Frank G Zöllner,et al.  SVM-based glioma grading: Optimization by feature reduction analysis. , 2012, Zeitschrift fur medizinische Physik.

[18]  Mitchel S Berger,et al.  Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. , 2012, Neuro-oncology.

[19]  C. Davatzikos,et al.  Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables , 2012, American Journal of Neuroradiology.

[20]  Mahlon D. Johnson,et al.  MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. , 2011, Neuro-oncology.

[21]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[22]  Lei Guo,et al.  Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma , 2011, Journal of magnetic resonance imaging : JMRI.

[23]  L. Schad,et al.  Support vector machines in DSC‐based glioma imaging: Suggestions for optimal characterization , 2010, Magnetic resonance in medicine.

[24]  Christos Davatzikos,et al.  Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme , 2009, Magnetic resonance in medicine.

[25]  Peter J Park,et al.  Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers , 2009, Molecular Cancer.

[26]  Sungheon Kim,et al.  Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging , 2009, NeuroImage.

[27]  Frank G Zoellner,et al.  Predictive modeling in glioma grading from MR perfusion images using support vector machines , 2008, Magnetic resonance in medicine.

[28]  Ho Yun Lee,et al.  Diffusion-Tensor Imaging for Glioma Grading at 3-T Magnetic Resonance Imaging: Analysis of Fractional Anisotropy and Mean Diffusivity , 2008, Journal of computer assisted tomography.

[29]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[30]  Haesun Park,et al.  Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis , 2007, Bioinform..

[31]  S. Price The role of advanced MR imaging in understanding brain tumour pathology , 2007, British journal of neurosurgery.

[32]  G Johnson,et al.  Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2006, AJNR. American journal of neuroradiology.

[33]  R. Henry,et al.  Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas , 2006, NMR in biomedicine.

[34]  N. Fayed,et al.  Contrast/Noise ratio on conventional MRI and choline/creatine ratio on proton MRI spectroscopy accurately discriminate low-grade from high-grade cerebral gliomas. , 2006, Academic radiology.

[35]  Jie Yang,et al.  Degree prediction of malignancy in brain glioma using support vector machines , 2006, Comput. Biol. Medicine.

[36]  T. Stadnik,et al.  Prognostic value of perfusion-weighted imaging in brain glioma: a prospective study , 2006, Acta Neurochirurgica.

[37]  Andreas Zell,et al.  Feature Selection for Descriptor Based Classification Models. 1. Theory and GA-SEC Algorithm , 2004, J. Chem. Inf. Model..

[38]  Michael H Lev,et al.  Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. , 2004, AJNR. American journal of neuroradiology.

[39]  Soonmee Cha,et al.  Imaging Glioblastoma Multiforme , 2003, Cancer journal.

[40]  D. Louis,et al.  Glioma classification: a molecular reappraisal. , 2001, The American journal of pathology.

[41]  W P Dillon,et al.  Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. , 2001, AJNR. American journal of neuroradiology.

[42]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[43]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[44]  P Abdolmaleki,et al.  Neural networks analysis of astrocytic gliomas from MRI appearances. , 1997, Cancer letters.

[45]  G. Criscuolo,et al.  Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. , 1995, Journal of neurosurgery.

[46]  M. Essig,et al.  Perfusion MRI: the five most frequently asked technical questions. , 2013, AJR. American journal of roentgenology.