Perfect Matchings in Balanced Hypergraphs – A Combinatorial Approach

Our topic is an extension of the following classical result of Hall to hypergraphs: A bipartite graph G contains a perfect matching if and only if for each independent set X of vertices, at least |X| vertices of G are adjacent to some vertex of X. Berge generalized the concept of bipartite graphs to hypergraphs by defining a hypergraph G to be balanced if each odd cycle in G has an edge containing at least three vertices of the cycle. Based on this concept, Conforti, Cornuéjols, Kapoor, and Vušković extended Hall's result by proving that a balanced hypergraph G contains a perfect matching if and only if for any disjoint sets A and B of vertices with |A| > |B|, there is an edge in G containing more vertices in A than in B (for graphs, the latter condition is equivalent to the latter one in Hall's result). Their proof is non-combinatorial and highly based on the theory of linear programming. In the present paper, we give an elementary combinatorial proof.