Modified Newton-MDPMHSS method for solving nonlinear systems with block two-by-two complex symmetric Jacobian matrices
暂无分享,去创建一个
[1] Yujiang Wu,et al. Accelerated Newton-GPSS methods for systems of nonlinear equations , 2014 .
[2] Fang Chen,et al. On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.
[3] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[4] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[5] Yujiang Wu,et al. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices , 2012 .
[6] M. Benzi,et al. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems , 2013 .
[7] Minhong Chen,et al. Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations , 2013, Numerical Algorithms.
[8] Jianrong Tan,et al. A convergence theorem for the inexact Newton methods based on Hölder continuous Fréchet derivative , 2008, Appl. Math. Comput..
[9] Fang Chen,et al. Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices , 2013, Numerical Algorithms.
[10] Werner C. Rheinboldt,et al. Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .
[11] Werner C. Rheinboldt,et al. Methods for solving systems of nonlinear equations , 1987 .
[12] Jing Wang,et al. MN-DPMHSS iteration method for systems of nonlinear equations with block two-by-two complex Jacobian matrices , 2017, Numerical Algorithms.
[13] Hong-Xiu Zhong,et al. On preconditioned modified Newton-MHSS method for systems of nonlinear equations with complex symmetric jacobian matrices , 2014, Numerical Algorithms.
[14] Zhong-zhi,et al. ON NEWTON-HSS METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS WITH POSITIVE-DEFINITE JACOBIAN MATRICES , 2010 .
[15] Hengbin An,et al. A choice of forcing terms in inexact Newton method , 2007 .
[16] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[17] Xiang Wang,et al. Efficient single-step preconditioned HSS iteration methods for complex symmetric linear systems , 2017, Comput. Math. Appl..
[18] Z. Bai,et al. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .
[19] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[20] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[21] Davod Khojasteh Salkuyeh,et al. Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations , 2014, Numer. Linear Algebra Appl..
[22] Chong Li,et al. Kantorovich-type convergence criterion for inexact Newton methods , 2009 .
[23] Fang Chen,et al. Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.
[24] Ali Barati,et al. A third-order Newton-type method to solve systems of nonlinear equations , 2007, Appl. Math. Comput..
[25] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[26] Minhong Chen,et al. Convergence analysis of the modified Newton-HSS method under the Hölder continuous condition , 2014, J. Comput. Appl. Math..
[27] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.