A Parameterization Method for Lagrangian Tori of Exact Symplectic Maps of R2r
暂无分享,去创建一个
[1] H. Rüssmann. On optimal estimates for the solutions of linear difference equations on the circle , 1976 .
[2] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[3] A. Celletti,et al. On the Stability of Realistic Three-Body Problems , 1997 .
[4] R. Llave,et al. A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .
[5] Rafael de la Llave,et al. A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .
[6] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[7] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[8] H. Rüssmann. On a new proof of Moser's twist mapping theorem , 1976 .
[9] À. Haro. An algorithm to generate canonical transformations: application to normal forms , 2002 .
[10] Jürgen Pöschel,et al. Integrability of Hamiltonian systems on cantor sets , 1982 .
[11] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[12] R. Llave,et al. Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.
[13] R. Llave,et al. Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.
[14] H. Broer,et al. KAM Theory : Quasi-periodicity in Dynamical Systems , 2010 .
[15] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[16] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[17] R. Llave,et al. Lindstedt series for lower dimensional tori , 1999 .
[18] Eduard Zehnder,et al. KAM theory in configuration space , 1989 .
[19] Analytic smoothing of geometric maps with applications to KAM theory , 2008 .
[20] J. Villanueva,et al. A KAM theorem without action-angle variables for elliptic lower dimensional tori , 2011 .
[21] A. Neishtadt. Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .
[22] J. Villanueva,et al. A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map , 2016 .
[23] Rafael de la Llave,et al. A Tutorial on Kam Theory , 2003 .
[24] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[25] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[26] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[27] J. Villanueva. Kolmogorov Theorem revisited , 2008 .
[28] Jordi-Lluís Figueras,et al. Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..
[29] R. Llave,et al. Singularity Theory for Non-Twist Kam Tori , 2014 .
[30] Jordi Villanueva. A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems , 2017, J. Nonlinear Sci..
[31] Helmut Rüssmann,et al. On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .