lp-Statistics in High Dimensions

This paper considers a new bootstrap procedure to estimate the distribution of highdimensional lp-statistics, i.e. the lp-norms of the sum of n independent d-dimensional random vectors with d ≫ n and p ∈ [1,∞]. We provide a non-asymptotic characterization of the sampling distribution of lp-statistics based on Gaussian approximation and show that the bootstrap procedure is consistent in the Kolmogorov-Smirnov distance under mild conditions on the covariance structure of the data. As an application of the general theory we propose a bootstrap hypothesis test for simultaneous inference on high-dimensional mean vectors. We establish its asymptotic correctness and consistency under high-dimensional alternatives, and discuss the power of the test as well as the size of associated confidence sets. We illustrate the bootstrap and testing procedure numerically on simulated data.

[1]  Yuta Koike Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles , 2019, Japanese Journal of Statistics and Data Science.

[2]  Cun-Hui Zhang,et al.  Beyond Gaussian approximation: Bootstrap for maxima of sums of independent random vectors , 2017, The Annals of Statistics.

[3]  Y. Fujikoshi,et al.  Gaussian Comparison and Anti-concentration , 2020 .

[4]  W. Wu,et al.  Pearson’s chi-squared statistics: approximation theory and beyond , 2019, Biometrika.

[5]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[6]  Martin Raivc,et al.  A multivariate Berry–Esseen theorem with explicit constants , 2018, Bernoulli.

[7]  Miles E. Lopes,et al.  Bootstrapping spectral statistics in high dimensions , 2017, Biometrika.

[8]  V. Spokoiny,et al.  Large ball probabilities, Gaussian comparison and anti-concentration , 2017, Bernoulli.

[9]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[10]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[11]  Miles E. Lopes,et al.  Bootstrapping max statistics in high dimensions: Near-parametric rates under weak variance decay and application to functional and multinomial data , 2018 .

[12]  Jianqing Fan,et al.  Robust estimation of high-dimensional covariance and precision matrices. , 2018, Biometrika.

[13]  G. Paouris,et al.  On Dvoretzky's theorem for subspaces of L , 2015, Journal of Functional Analysis.

[14]  Subgaussian random variables in Hilbert spaces Rendiconti del Seminario Matematico , 2018 .

[15]  Kengo Kato,et al.  Detailed proof of Nazarov's inequality , 2017, 1711.10696.

[16]  Guang Cheng,et al.  Simultaneous Inference for High-Dimensional Linear Models , 2016, 1603.01295.

[17]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[18]  G. Biau,et al.  High-Dimensional \(p\)-Norms , 2013, 1311.0587.

[19]  Jianqing Fan,et al.  Power Enhancement in High Dimensional Cross-Sectional Tests , 2013, Econometrica : journal of the Econometric Society.

[20]  Kengo Kato,et al.  Central limit theorems and bootstrap in high dimensions , 2014, 1412.3661.

[21]  Demian Pouzo Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension , 2014, 1411.2701.

[22]  Vladimir Spokoiny,et al.  Bootstrap confidence sets under model misspecification , 2014, 1410.0347.

[23]  S. Chatterjee Superconcentration and Related Topics , 2014 .

[24]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[25]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[26]  A. Röllin,et al.  Stein’s method in high dimensions with applications , 2011, 1101.4454.

[27]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[28]  Kengo Kato,et al.  Comparison and anti-concentration bounds for maxima of Gaussian random vectors , 2013, 1301.4807.

[29]  Kengo Kato,et al.  Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors , 2012, 1212.6906.

[30]  F. Bunea,et al.  On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA , 2012, 1212.5321.

[31]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[32]  Jianqing Fan,et al.  Variance estimation using refitted cross‐validation in ultrahigh dimensional regression , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[33]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[34]  Jianqing Fan,et al.  High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.

[35]  Friedrich Gotze,et al.  Explicit rates of approximation in the CLT for quadratic forms , 2011, 1104.0519.

[36]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[37]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[38]  Song-xi Chen,et al.  A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.

[39]  Lutz Dümbgen,et al.  Nemirovski's Inequalities Revisited , 2008, Am. Math. Mon..

[40]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[41]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[42]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[43]  P. Bickel,et al.  BOOTSTRAPPING REGRESSION MODELS WITH MANY PARAMETERS , 2008 .

[44]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[45]  A. Carbery,et al.  Distributional and L-q norm inequalities for polynomials over convex bodies in R-n , 2001 .

[46]  Z. Bai,et al.  EFFECT OF HIGH DIMENSION: BY AN EXAMPLE OF A TWO SAMPLE PROBLEM , 1999 .

[47]  D. Radulovic Can We Bootstrap Even if CLT Fails? , 1998 .

[48]  F. Götze,et al.  Uniform rates of convergence in the CLT for quadratic forms in multidimensional spaces , 1997 .

[49]  R. G. Antonini Subgaussian random variables in Hilbert spaces , 1997 .

[50]  J. Cima,et al.  On weak* convergence in ¹ , 1996 .

[51]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[52]  F. Götze On the Rate of Convergence in the Multivariate CLT , 1991 .

[53]  Gideon Schechtman,et al.  On the volume of the intersection of two $L\sp n\sb p$ balls , 1990 .

[54]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[55]  V. Bentkus Lower bounds for the rate of convergence in the central limit theorem in Banach spaces , 1985 .

[56]  E. Bolthausen An estimate of the remainder in a combinatorial central limit theorem , 1984 .

[57]  J. Kuelbs Probability on Banach spaces , 1978 .

[58]  R. Bhattacharya Refinements of the Multidimensional Central Limit Theorem and Applications , 1977 .