Strong Stability Preserving Explicit Runge-Kutta Methods of Maximal Effective Order

We apply the concept of effective order to strong stability preserving (SSP) explicit Runge-Kutta methods. Relative to classical Runge-Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construc- tion of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods— require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge-Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  J. Butcher Order and effective order , 1998 .

[3]  David I. Ketcheson,et al.  Step Sizes for Strong Stability Preservation with Downwind-Biased Operators , 2011, SIAM J. Numer. Anal..

[4]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[5]  J. Kraaijevanger,et al.  Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .

[6]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[7]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[8]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[9]  J. Butcher The effective order of Runge-Kutta methods , 1969 .

[10]  Steven J. Ruuth,et al.  Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..

[11]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[12]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[13]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[14]  Steven J. Ruuth,et al.  High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..

[15]  R. Jeltsch Reducibility and contractivity of Runge–Kutta methods revisited , 2006 .

[16]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[17]  J. M. Sanz-Serna,et al.  The number of conditions for a Runge-Kutta method to have effective order p , 1996 .

[18]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[19]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[20]  David I. Ketcheson,et al.  Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..

[21]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[22]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[23]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[24]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[25]  Steven J. Ruuth,et al.  Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..

[26]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[27]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[28]  Ernst Hairer,et al.  On the Butcher group and general multi-value methods , 1974, Computing.

[29]  P. Bullen Handbook of means and their inequalities , 1987 .

[30]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[31]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..