Strong Stability Preserving Explicit Runge-Kutta Methods of Maximal Effective Order
暂无分享,去创建一个
Colin B. Macdonald | David I. Ketcheson | Yiannis Hadjimichael | James H. Verner | D. Ketcheson | C. Macdonald | Yiannis Hadjimichael | J. Verner
[1] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[2] J. Butcher. Order and effective order , 1998 .
[3] David I. Ketcheson,et al. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators , 2011, SIAM J. Numer. Anal..
[4] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[5] J. Kraaijevanger,et al. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .
[6] John C. Butcher,et al. An algebraic theory of integration methods , 1972 .
[7] Colin B. Macdonald,et al. Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .
[8] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[9] J. Butcher. The effective order of Runge-Kutta methods , 1969 .
[10] Steven J. Ruuth,et al. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..
[11] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[12] M. N. Spijker,et al. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..
[13] Steven J. Ruuth,et al. Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..
[14] Steven J. Ruuth,et al. High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..
[15] R. Jeltsch. Reducibility and contractivity of Runge–Kutta methods revisited , 2006 .
[16] Matematik,et al. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[17] J. M. Sanz-Serna,et al. The number of conditions for a Runge-Kutta method to have effective order p , 1996 .
[18] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[19] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..
[20] David I. Ketcheson,et al. Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..
[21] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[22] M. N. Spijker,et al. Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..
[23] Inmaculada Higueras,et al. On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..
[24] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .
[25] Steven J. Ruuth,et al. Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..
[26] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[27] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[28] Ernst Hairer,et al. On the Butcher group and general multi-value methods , 1974, Computing.
[29] P. Bullen. Handbook of means and their inequalities , 1987 .
[30] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[31] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..