On the motion planning of rolling surfaces
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] T. Ważewski,et al. Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .
[3] N. Steenrod. The Topology of Fibre Bundles. (PMS-14) , 1951 .
[4] Lloyd Jones. On the choice of subgoals for learning control systems , 1967 .
[5] R. Gardner. INVARIANTS OF PFAFFIAN SYSTEMS^) , 2010 .
[6] R. Gamkrelidze,et al. THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .
[7] W. Klingenberg. Riemannian Geometry , 1982 .
[8] Zexiang Li,et al. Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..
[9] Robert B. Gardner,et al. Linear Differential Systems , 1991 .
[10] H. Sussmann. New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .
[11] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[12] Robert L. Bryant,et al. Rigidity of integral curves of rank 2 distributions , 1993 .
[13] H. Sussmann,et al. A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[14] Velimir Jurdjevic. The geometry of the plate-ball problem , 1993 .
[15] M. Fliess,et al. Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .
[16] Philippe Martin,et al. Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..
[17] M. Fliess,et al. Flatness and defect of non-linear systems: introductory theory and examples , 1995 .
[18] V. Jurdjevic. Geometric control theory , 1996 .
[19] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[20] M. Fliess,et al. Deux applications de la géométrie locale des diffiétés , 1997 .
[21] A. Chelouah,et al. Extensions of differential flat fields and Liouvillian systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[22] A. Agrachev,et al. An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[23] Philippe Martin,et al. A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..
[24] Antonio Bicchi,et al. Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..
[25] Jean Lévine,et al. On Motion Planning for Robotic Manipulation with Permanent Rolling Contacts , 2002, Int. J. Robotics Res..
[26] R. Murray,et al. Nilpotent Bases for Nonholonomic Distributions , 2007 .