On the motion planning of rolling surfaces

In this paper, we address the issue of motion planning for the control system S R that results from the rolling without slipping nor spinning of a two dimensional Riemannian mani- fold M1 onto another one M2. We present two procedures to tackle the motion planning problem when M1 is a plane and M2 a convex surface. The first approach rests on the Liou- villian character of S R. More precisely, if just one of the manifolds has a symmetry of revolu- tion, then S R is shown to be a Liouvillian system. If, in addition, that manifold is convex and the other one is a plane, then a maximal linearizing output is explicitely computed. The second approach consists of the use of a continuation method. Even though S R admits nontrivial abnormal extremals, we are still able to successfully apply the continuation method if M2 admits a stable periodic geodesic.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[3]  N. Steenrod The Topology of Fibre Bundles. (PMS-14) , 1951 .

[4]  Lloyd Jones On the choice of subgoals for learning control systems , 1967 .

[5]  R. Gardner INVARIANTS OF PFAFFIAN SYSTEMS^) , 2010 .

[6]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[7]  W. Klingenberg Riemannian Geometry , 1982 .

[8]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[9]  Robert B. Gardner,et al.  Linear Differential Systems , 1991 .

[10]  H. Sussmann New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .

[11]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[12]  Robert L. Bryant,et al.  Rigidity of integral curves of rank 2 distributions , 1993 .

[13]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[14]  Velimir Jurdjevic The geometry of the plate-ball problem , 1993 .

[15]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[16]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[17]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[18]  V. Jurdjevic Geometric control theory , 1996 .

[19]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[20]  M. Fliess,et al.  Deux applications de la géométrie locale des diffiétés , 1997 .

[21]  A. Chelouah,et al.  Extensions of differential flat fields and Liouvillian systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[22]  A. Agrachev,et al.  An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[23]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[24]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[25]  Jean Lévine,et al.  On Motion Planning for Robotic Manipulation with Permanent Rolling Contacts , 2002, Int. J. Robotics Res..

[26]  R. Murray,et al.  Nilpotent Bases for Nonholonomic Distributions , 2007 .