Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase

Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.

[1]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[2]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[3]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[4]  M. Marahiel,et al.  The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. , 1997, Chemistry & biology.

[5]  B. Shen,et al.  Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. , 2003, Biochemistry.

[6]  Gerard D. Wright,et al.  One-pot chemoenzymatic preparation of coenzyme A analogues. , 2004, Analytical biochemistry.

[7]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[8]  A. Minami,et al.  Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis. , 2012, Current opinion in chemical biology.

[9]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[10]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[11]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[12]  C. Walsh,et al.  Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. , 2001, Current opinion in chemical biology.

[13]  R. Haselkorn,et al.  Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90 , 2000, Molecular microbiology.

[14]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[15]  R. Gillilan,et al.  Synchrotron-based small-angle X-ray scattering of proteins in solution , 2014, Nature Protocols.

[16]  D. Frueh,et al.  Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. , 2015, Journal of the American Chemical Society.

[17]  J. Thoden,et al.  Structure of a sugar N-formyltransferase from Campylobacter jejuni. , 2013, Biochemistry.

[18]  M. Marahiel,et al.  The Linear Pentadecapeptide Gramicidin Is Assembled by Four Multimodular Nonribosomal Peptide Synthetases That Comprise 16 Modules with 56 Catalytic Domains* , 2004, Journal of Biological Chemistry.

[19]  B. Shen,et al.  The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins , 2014, Proteins.

[20]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[21]  R. Wu,et al.  Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. , 2008, Biochemistry.

[22]  Dmitri I. Svergun,et al.  Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering , 2015, IUCrJ.

[23]  M. Marahiel,et al.  Crystal Structure of DltA , 2008, Journal of Biological Chemistry.

[24]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[25]  B. Wallace Common structural features in gramicidin and other ion channels , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  C. Janson,et al.  Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Marahiel,et al.  Daptomycin, a Bacterial Lipopeptide Synthesized by a Nonribosomal Machinery* , 2010, The Journal of Biological Chemistry.

[28]  R. Gillilan,et al.  Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution. , 2015, Journal of synchrotron radiation.

[29]  Kira J Weissman,et al.  The structural biology of biosynthetic megaenzymes. , 2015, Nature chemical biology.

[30]  B. Shen,et al.  Oxazolomycin Biosynthesis in Streptomyces albus JA3453 Featuring an “Acyltransferase-less” Type I Polyketide Synthase That Incorporates Two Distinct Extender Units* , 2010, The Journal of Biological Chemistry.

[31]  S. Heinemann,et al.  Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase. , 2015, Angewandte Chemie.

[32]  M. Blackledge,et al.  Structural characterization of flexible proteins using small-angle X-ray scattering. , 2007, Journal of the American Chemical Society.

[33]  Christopher T Walsh,et al.  Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility , 2004, Science.

[34]  S. Bruner,et al.  Rational Manipulation of Carrier‐Domain Geometry in Nonribosomal Peptide Synthetases , 2007, Chembiochem : a European journal of chemical biology.

[35]  A. Gulick,et al.  Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein. , 2014, Acta crystallographica. Section D, Biological crystallography.

[36]  David R. Liu,et al.  A protein interaction surface in nonribosomal peptide synthesis mapped by combinatorial mutagenesis and selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Nick V Grishin,et al.  PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. , 2014, Methods in molecular biology.

[38]  Y. Mechulam,et al.  Crystal structure of methionyl‐tRNAfMet transformylase complexed with the initiator formyl‐methionyl‐tRNAfMet , 1998, The EMBO journal.

[39]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[40]  A. Gulick Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. , 2009, ACS chemical biology.

[41]  Mitsuru Yoshida,et al.  Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12 , 2009, Nature Biotechnology.

[42]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[43]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[44]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[45]  A. Lawen,et al.  Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. , 1990, The Journal of biological chemistry.

[46]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[47]  Yi-Qiang Cheng Deciphering the Biosynthetic Codes for the Potent Anti‐SARS‐CoV Cyclodepsipeptide Valinomycin in Streptomyces tsusimaensis ATCC 15141 , 2006, Chembiochem : a European journal of chemical biology.

[48]  Detlef Snakenborg,et al.  BioXTAS RAW, a software program for high‐throughput automated small‐angle X‐ray scattering data reduction and preliminary analysis , 2009 .

[49]  M. Burkart,et al.  Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. , 2012, Natural product reports.

[50]  C. Aldrich,et al.  Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. , 2012, Biochemistry.

[51]  S. Opella,et al.  Structure and Substrate Sequestration in the Pyoluteorin Type II Peptidyl Carrier Protein PltL. , 2015, Journal of the American Chemical Society.

[52]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[53]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[54]  Michael A Fischbach,et al.  New antibiotics from bacterial natural products , 2006, Nature Biotechnology.

[55]  M. Marahiel,et al.  Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. , 2006, Journal of the American Chemical Society.

[56]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[57]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .