Optimized Surface Code Communication in Superconducting Quantum Computers

Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [30, 73], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes-planar and double-defect surface codes-using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.CCS CONCEPTS• Hardware $\rightarrow$ Quantum computation; Quantum error correction and fault tolerance;

[1]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  Frederic T. Chong,et al.  Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, ISCA 2006.

[4]  Simon J. Devitt,et al.  A Compiler for Fault-Tolerant High Level Quantum Circuits , 2015 .

[5]  Susmita Sur-Kolay,et al.  PAQCS: Physical Design-Aware Fault-Tolerant Quantum Circuit Synthesis , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[6]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[7]  Zijun Chen,et al.  Fabrication and characterization of aluminum airbridges for superconducting microwave circuits , 2013, 1310.2325.

[8]  Alireza Shafaei,et al.  Squash: a scalable quantum mapper considering ancilla sharing , 2014, GLSVLSI '14.

[9]  Austin G. Fowler,et al.  Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.

[10]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[11]  Massoud Pedram,et al.  Minimizing the latency of quantum circuits during mapping to the ion-trap circuit fabric , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[12]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[13]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[14]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[15]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  Alireza Shafaei,et al.  Qubit placement to minimize communication overhead in 2D quantum architectures , 2014, 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[18]  Margaret Martonosi,et al.  Compiler Management of Communication and Parallelism for Quantum Computation , 2015, ASPLOS.

[19]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[20]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Rodney Van Meter,et al.  On the Effect of Quantum Interaction Distance on Quantum Addition Circuits , 2008, JETC.

[23]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[26]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[27]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.

[28]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[29]  Robert Wille,et al.  Synthesis of quantum circuits for linear nearest neighbor architectures , 2011, Quantum Inf. Process..

[30]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[31]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[32]  Austin G. Fowler,et al.  Erratum: High-threshold universal quantum computation on the surface code [Phys. Rev. A 80, 052312 (2009)] , 2013 .

[33]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[34]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[35]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[36]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[38]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[39]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[40]  Massoud Pedram,et al.  Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures , 2016, IEEE Circuits and Systems Magazine.

[41]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[42]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[43]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[44]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[45]  John Kubiatowicz,et al.  Running a Quantum Circuit at the Speed of Data , 2008, 2008 International Symposium on Computer Architecture.

[46]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.

[47]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[48]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[49]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[50]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[51]  Simon J. Devitt,et al.  Programming quantum computers using 3-D puzzles, coffee cups, and doughnuts , 2016, XRDS.

[52]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[53]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[54]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[55]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[56]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[57]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[58]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  Simon J. Devitt,et al.  Synthesis of Arbitrary Quantum Circuits to Topological Assembly , 2016, Scientific Reports.

[60]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[61]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[62]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[63]  Margaret Martonosi,et al.  Characterizing the performance effect of trials and rotations in applications that use Quantum Phase Estimation , 2014, 2014 IEEE International Symposium on Workload Characterization (IISWC).

[64]  Alireza Shafaei,et al.  Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[65]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[66]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[67]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[68]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[69]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[70]  Frederic T. Chong,et al.  QuRE: The Quantum Resource Estimator toolbox , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[71]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[72]  Scott Aaronson,et al.  Guest Column: NP-complete problems and physical reality , 2005, SIGA.

[73]  Susmita Sur-Kolay,et al.  Linear Nearest Neighbor Synthesis of Reversible Circuits by Graph Partitioning , 2011, ArXiv.

[74]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[75]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[76]  Niraj K. Jha,et al.  FTQLS: Fault-Tolerant Quantum Logic Synthesis , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[77]  Simon J. Devitt,et al.  Fault-tolerant, high-level quantum circuits: form, compilation and description , 2015, 1509.02004.

[78]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[79]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[80]  Eyob A. Sete,et al.  A functional architecture for scalable quantum computing , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[81]  Simon J. Devitt,et al.  Optimization of lattice surgery is NP-hard , 2017, npj Quantum Information.

[82]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[83]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[84]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[85]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.

[86]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..