Enhancing bulk metallic glass formation in Ni–Nb–Sn-based alloys via substitutional alloying with Co and Hf

Bulk metallic glasses have been formed over a fairly wide composition range (54-62 at.% Ni, 32-36 at.% Nb, and 3-11 at.% Sn) in the Ni-Nb-Sn ternary system. Partial substitution of Co for Ni and Hf for 1,;b improves the glass-forming ability, eventually leading to 4 mm glassy rods at the Ni56Co3Nb28Hf8Sn5 composition. The positive effects of these alloying elements have been explained based on a systematic monitoring of the amount and morphology of the competing crystalline phases as a function of the Co and Hf contents.

[1]  Jianzhong Jiang,et al.  La-based bulk metallic glasses with critical diameter up to 30 mm , 2007 .

[2]  Y. Saotome,et al.  Wear resistivity of super-precision microgear made of Ni-based metallic glass , 2007 .

[3]  Jian Xu,et al.  Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity , 2006 .

[4]  Yat Li,et al.  Improving glass-forming ability of Mg−Cu−Y via substitutional alloying: Effects of Ag versus Ni , 2006 .

[5]  J. Shen,et al.  Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy , 2006 .

[6]  D. V. Louzguine-Luzgin,et al.  Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys , 2006 .

[7]  Yat Li,et al.  A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility , 2006 .

[8]  A. Inoue,et al.  Ni-based bulk glassy alloys with superhigh strength of 3800MPa in Ni–Fe–B–Si–Nb system , 2006 .

[9]  Yat Li,et al.  A new centimeter-diameter Cu-based bulk metallic glass , 2006 .

[10]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[11]  D. V. Louzguine-Luzgin,et al.  Ni-Rich Ni-Pd-P Glassy Alloy with High Strength and Good Ductility , 2006 .

[12]  W. H. Li,et al.  Binary Ni-Nb bulk metallic glasses , 2006 .

[13]  J. Wang,et al.  Ni-based fully amorphous metallic coating with high corrosion resistance , 2006 .

[14]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[15]  Jian Xu,et al.  Discovering inch-diameter metallic glasses in three-dimensional composition space , 2005 .

[16]  E. Ma,et al.  Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg−Cu−Y Ternary System , 2005 .

[17]  G. Wang,et al.  Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy , 2005 .

[18]  Yi Li Bulk metallic glasses: Eutectic coupled zone and amorphous formation , 2005 .

[19]  D. Bae,et al.  Bulk glass formation in the Ni–Zr–Ti–Nb–Si–Sn alloy system , 2004 .

[20]  W. Johnson,et al.  Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm , 2004 .

[21]  W. Johnson,et al.  Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. , 2004, Physical review letters.

[22]  C. Liu,et al.  Structural amorphous steels. , 2004, Physical review letters.

[23]  W. Johnson,et al.  Thermophysical properties of Ni–Nb and Ni–Nb–Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing , 2004 .

[24]  Dong Wang,et al.  Bulk metallic glass formation in the binary Cu–Zr system , 2004 .

[25]  S. Poon,et al.  Fe-based bulk metallic glasses with diameter thickness larger than one centimeter , 2004 .

[26]  Jan Schroersa Highly processable bulk metallic glass-forming alloys in the Pt – Co – Ni – Cu – P system , 2004 .

[27]  D. Bae,et al.  Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability , 2003 .

[28]  S. Poon,et al.  Metallic glass ingots based on yttrium , 2003 .

[29]  A. Inoue,et al.  Glass transition behavior and mechanical properties of Ni-Si-B-based glassy alloys , 2003 .

[30]  Wei Zhang,et al.  Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys , 2003 .

[31]  W. Johnson,et al.  Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B,Fe,Cu) alloy systems , 2003 .

[32]  Wei Zhang,et al.  Thermal Stability and Mechanical Strength of Bulk Glassy Ni-Nb-Ti-Zr Alloys , 2002 .

[33]  A. Inoue,et al.  New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa , 2002 .

[34]  H. Habazaki,et al.  Highly corrosion-resistant Ni-based bulk amorphous alloys , 2001 .

[35]  A. Inoue,et al.  Formation and Mechanical Properties of Bulk Glassy Ni57-xTi23Zr15Si5Pdx Alloys , 2001 .

[36]  W. Löser,et al.  Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts , 1999 .

[37]  A. Inoue,et al.  Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter , 1997 .

[38]  A. Inoue,et al.  Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method , 1996 .

[39]  H. Biloni CHAPTER 8 – SOLIDIFICATION , 1996 .

[40]  W. Johnson,et al.  A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 , 1993 .

[41]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[42]  F. Spaepen,et al.  Nickel-niobium alloys obtained by picosecond pulsed laser quenching , 1986 .

[43]  B. Kear,et al.  Rapidly Solidified Amorphous and Crystalline Alloys , 1982 .

[44]  R. C. Ruhl,et al.  New microcrystalline phases in the NbNi and TaNi systems , 1967 .