Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation
暂无分享,去创建一个
[1] Daniel A Lidar,et al. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.
[2] C. Monroe,et al. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.
[3] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[4] P. Zanardi. Symmetrizing Evolutions , 1998, quant-ph/9809064.
[5] D A Lidar,et al. Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.
[6] T Yamamoto,et al. Charge echo in a cooper-pair box. , 2002, Physical review letters.
[7] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[8] Ronnie Kosloff,et al. Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.
[9] Klaus Molmer,et al. Entanglement and quantum computation with ions in thermal motion , 2000 .
[10] E. Knill,et al. Resilient Quantum Computation , 1998 .
[11] Gerard J. Milburn,et al. Ion Trap Quantum Computing with Warm Ions , 2000 .
[12] K. B. Whaley,et al. Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.
[13] J. Levy. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.
[14] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[15] P. Zanardi,et al. Error avoiding quantum codes , 1997, quant-ph/9710041.
[16] K. B. Whaley,et al. Encoded universality for generalized anisotropic exchange Hamiltonians , 2002, quant-ph/0204016.
[17] Lorenza Viola. Quantum control via encoded dynamical decoupling , 2002 .
[18] Daniel A. Lidar,et al. Qubits as Parafermions , 2001, OFC 2001.
[19] Seth Lloyd,et al. Resonant cancellation of off-resonant effects in a multilevel qubit , 2000 .
[20] M. A. Rowe,et al. A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.
[21] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[22] G. J. Milburn,et al. DECOHERENCE IN ION TRAPS DUE TO LASER INTENSITY AND PHASE FLUCTUATIONS , 1998 .
[23] A. Leggett,et al. Dynamics of the dissipative two-state system , 1987 .
[24] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[25] Daniel A. Lidar,et al. Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..
[26] G. Guo,et al. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.
[27] D A Lidar,et al. Universal fault-tolerant quantum computation in the presence of spontaneous emission and collective dephasing. , 2002, Physical review letters.
[28] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] Artur Ekert,et al. Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[30] Seth Lloyd,et al. Universal Control of Decoupled Quantum Systems , 1999 .
[31] C. Monroe,et al. Experimental entanglement of four particles , 2000, Nature.
[32] Alexandre Blais,et al. Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits , 2002, Quantum Inf. Process..
[33] G. Guo,et al. Suppressing environmental noise in quantum computation through pulse control , 1999 .
[34] C. Monroe,et al. Architecture for a large-scale ion-trap quantum computer , 2002, Nature.
[35] David P. DiVincenzo,et al. Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..
[36] D. A. Lidar,et al. Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .
[37] F. Schmidt-Kaler,et al. Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .
[38] Lorenza Viola,et al. Implementation of universal control on a decoherence-free qubit , 2002 .
[39] T. L. James,et al. CHAPTER 2 – PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE , 1975 .
[40] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[41] Simon C. Benjamin. Simple pulses for universal quantum computation with a Heisenberg ABAB chain , 2001 .
[42] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[43] Knight,et al. Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.
[44] D. Vitali,et al. Using parity kicks for decoherence control , 1998, quant-ph/9808055.
[45] Masaki Aihara,et al. Multipulse control of decoherence , 2002 .
[46] Daniel A. Lidar,et al. CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.
[47] Paolo Zanardi. Computation on an error-avoiding quantum code and symmetrization , 1999 .
[48] J. Cirac,et al. Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.
[49] Alex Brown. Two-color pulsed laser excitation of dipolar molecules: Absolute laser carrier-phase effects , 2002 .
[50] K. Mølmer,et al. QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.
[51] K. B. Whaley,et al. Universal quantum computation with the exchange interaction , 2000, Nature.
[52] C. F. Roos,et al. Speed of ion-trap quantum-information processors , 2000, quant-ph/0003087.
[53] M. A. Rowe,et al. Heating of trapped ions from the quantum ground state , 2000 .
[54] D A Lidar,et al. Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.
[55] Laflamme,et al. Perfect Quantum Error Correcting Code. , 1996, Physical review letters.
[56] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .
[57] D. Vitali,et al. Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.
[58] D A Lidar,et al. Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.
[59] M. Aihara. Non-Markovian theory of nonlinear-optical phenomena associated with the extremely fast relaxation in condensed matter , 1982 .
[60] Kempe,et al. Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.
[61] A. G. White,et al. Experimental verification of decoherence-free subspaces. , 2000, Science.
[62] C. Monroe,et al. Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.
[63] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.