Estimation of Nonlinear Errors-in-Variables Models for Computer Vision Applications

In an errors-in-variables (EIV) model, all the measurements are corrupted by noise. The class of EIV models with constraints separable into the product of two nonlinear functions, one solely in the variables and one solely in the parameters, is general enough to represent most computer vision problems. We show that the estimation of such nonlinear EIV models can be reduced to iteratively estimating a linear model having point dependent, i.e., heteroscedastic, noise process. Particular cases of the proposed heteroscedastic errors-in-variables (HEIV) estimator are related to other techniques described in the vision literature: the Sampson method, renormalization, and the fundamental numerical scheme. In a wide variety of tasks, the HEIV estimator exhibits the same, or superior, performance as these techniques and has a weaker dependence on the quality of the initial solution than the Levenberg-Marquardt method, the standard approach toward estimating nonlinear models

[1]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[2]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[3]  PAUL D. SAMPSON,et al.  Fitting conic sections to "very scattered" data: An iterative refinement of the bookstein algorithm , 1982, Comput. Graph. Image Process..

[4]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  W. Stutzman,et al.  Numerical evaluation of radiation integrals for reflector antenna analysis including a new measure of accuracy , 1988 .

[6]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[7]  J. Vandewalle,et al.  Analysis and properties of the generalized total least squares problem AX≈B when some or all columns in A are subject to error , 1989 .

[8]  R. Zamar Robust estimation in the errors-in-variables model , 1989 .

[9]  K. Kanatani 3D recovery of polyhedra by rectangularity heuristics , 1989, International Workshop on Industrial Applications of Machine Intelligence and Vision,.

[10]  William H. Press,et al.  Numerical recipes , 1990 .

[11]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[12]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[14]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[15]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[16]  G. Stewart Errors in variables for numerical analysts , 1997 .

[17]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[18]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[19]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[20]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[21]  Naoya Ohta,et al.  Optimal Estimation of Three-Dimensional Rotation and Reliability Evaluation , 1998, ECCV.

[22]  David E. Tyler,et al.  Performance Assessment by Resampling: Rigid Motion Estimators , 1998 .

[23]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[24]  Peter Meer,et al.  Optimal rigid motion estimation and performance evaluation with bootstrap , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[25]  Wojciech Chojnacki,et al.  On the Fitting of Surfaces to Data with Covariances , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Peter Meer,et al.  A general method for Errors-in-Variables problems in computer vision , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Peter Meer,et al.  Reduction of bias in maximum likelihood ellipse fitting , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[28]  Peter Meer,et al.  Registration via direct methods: a statistical approach , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[29]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[30]  Kenichi Kanatani,et al.  Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy , 2001, IEEE Trans. Inf. Theory.

[31]  Peter Meer,et al.  A versatile method for trifocal tensor estimation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[32]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[33]  P. Meer,et al.  Heteroscedastic errors-in-variables models in computer vision , 2001 .

[34]  Takeo Kanade,et al.  Gauge fixing for accurate 3D estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Peter Meer,et al.  Balanced Recovery of 3D Structure and Camera Motion from Uncalibrated Image Sequences , 2002, ECCV.

[36]  Wojciech Chojnacki,et al.  A New Constrained Parameter Estimator: Experiments in Fundamental Matrix Computation , 2002, BMVC.

[37]  William H. Press,et al.  Numerical recipes in C , 2002 .

[38]  Haifeng Chen,et al.  Robust regression with projection based M-estimators , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[39]  David J. Fleet,et al.  Error-in-variables likelihood functions for motion estimation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[40]  Wojciech Chojnacki,et al.  A new constrained parameter estimator for computer vision applications , 2004, Image Vis. Comput..

[41]  Wojciech Chojnacki,et al.  Rationalising the Renormalisation Method of Kanatani , 2001, Journal of Mathematical Imaging and Vision.

[42]  Wojciech Chojnacki,et al.  From FNS to HEIV: a link between two vision parameter estimation methods , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Andrea J. van Doorn,et al.  The Generic Bilinear Calibration-Estimation Problem , 2004, International Journal of Computer Vision.

[44]  S. Shankar Sastry,et al.  Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.

[45]  Peter Meer,et al.  Heteroscedastic Regression in Computer Vision: Problems with Bilinear Constraint , 2000, International Journal of Computer Vision.

[46]  Yakup Genc,et al.  A balanced approach to 3D tracking from image streams , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[47]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .