Comparison of measured and calculated X-ray and hot-electron production in short-pulse laser-solid interactions at moderate intensities.

Ultrashort pulse laser-solid interaction experiments with 4x10(16) W/cm(2),120 fs, 45 degrees incidence angle, p-polarized pulses are theoretically analyzed with the help of 1(1/2)-dimensional (1(1/2) D) particle-in-cell (PIC) simulations. The laser impinges upon preformed plasmas with a precisely controlled density-gradient scale-length. PIC electron distribution functions are used as an input to 3D Monte Carlo simulations to interpret measured electron distributions and Kalpha radiation emission. Satisfactory agreement between the experimental and simulation results is obtained for the measured absorption coefficient, the energy distribution of the back-scattered hot electrons, the hot-electron temperature in the bulk of the target, and the Kalpha yield, when the preplasma scale-length is varied.