Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles

The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle–liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

[1]  Anton Plech,et al.  Kinetics of the X-ray induced gold nanoparticle synthesis. , 2008, Physical chemistry chemical physics : PCCP.

[2]  Ralf Brinkmann,et al.  Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses. , 2005, Journal of biomedical optics.

[3]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[4]  M. Wulff,et al.  Time-resolved X-ray diffraction on laser-excited metal nanoparticles , 2003 .

[5]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[6]  Paul V. Braun,et al.  AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution , 2004 .

[7]  F. Schotte,et al.  Visualizing chemical reactions in solution by picosecond x-ray diffraction. , 2004, Physical review letters.

[8]  D. Lapotko,et al.  Photothermal properties of gold nanoparticles under exposure to high optical energies , 2008, Nanotechnology.

[9]  J. Turkevich,et al.  Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black1a , 1951 .

[10]  M. Nielsen,et al.  Analysis of time-resolved X-ray scattering data from solution-state systems. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[12]  J. Gallagher,et al.  Refractive index of water and steam as function of wavelength, temperature and density , 1990 .

[13]  A. Prosperetti,et al.  Bubble Dynamics and Cavitation , 1977 .

[14]  Leonid V. Zhigilei,et al.  Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water , 2007 .

[15]  G. Seifert,et al.  Size dependent ultrafast cooling of water droplets in microemulsions by picosecond infrared spectroscopy. , 2002, Physical review letters.

[16]  Sow-Hsin Chen,et al.  Isochoric temperature differential of the x-ray structure factor and structural rearrangements in low-temperature heavy water , 1983 .

[17]  Dmitri Lapotko,et al.  Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. , 2009, Optics express.

[18]  Y. Yamaguchi,et al.  Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer. , 2006, The journal of physical chemistry. B.

[19]  G. Frens Controlled nucleation for the regulation of the particle size in monodisperse gold solutions , 1973 .

[20]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[21]  G. Plessen,et al.  Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. , 2006, The Journal of chemical physics.

[22]  Y. Yamaguchi,et al.  Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses. , 2005, The journal of physical chemistry. B.

[23]  B. Palpant,et al.  Thermal response of nanocomposite materials under pulsed laser excitation , 2004 .

[24]  T. Dekorsy,et al.  A surface phase transition of supported gold nanoparticles. , 2007, Nano letters.

[25]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[26]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[27]  Jae Hyuk Lee,et al.  Impulsive solvent heating probed by picosecond x-ray diffraction. , 2006, The Journal of chemical physics.

[28]  Ralf Brinkmann,et al.  Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation , 2007 .

[29]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[30]  Charles P. Lin,et al.  CAVITATION AND ACOUSTIC EMISSION AROUND LASER-HEATED MICROPARTICLES , 1998 .

[31]  Johannes Boneberg,et al.  Femtosecond laser near field ablation , 2009 .

[32]  H. Sakai Surface-induced melting of small particles , 1996 .

[33]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[34]  H. Schmidt,et al.  Optically Induced Damping Of The Surface Plasmon Resonance In Gold Colloids , 1997, Quantum Electronics and Laser Science Conference.

[35]  Christian Dahmen,et al.  Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering , 2004 .

[36]  Xunbin Wei,et al.  Selective cell targeting with light-absorbing microparticles and nanoparticles. , 2003, Biophysical journal.

[37]  M. Wulff,et al.  Small-angle pump-probe studies of photoexcited nanoparticles. , 2007, Journal of synchrotron radiation.

[38]  V. Babenko,et al.  Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine , 2004 .

[39]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[40]  Detlef Lohse,et al.  Single bubble sonoluminescence , 2002 .

[41]  B. Luk’yanchuk,et al.  Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres , 2007 .

[42]  A. Plech,et al.  Cavitation dynamics on the nanoscale , 2005 .

[43]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.

[44]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[45]  J. Sader,et al.  Coherent Excitation of Vibrational Modes in Gold Nanorods , 2002 .

[46]  Johannes Boneberg,et al.  Femtosecond laser near-field ablation from gold nanoparticles , 2006 .

[47]  Anton Plech,et al.  Thermal dynamics in laser excited metal nanoparticles , 2005 .

[48]  Jae Hyuk Lee,et al.  Structural kinetics in protein-coated gold nanoparticles probed by time-resolved x-ray scattering , 2009 .

[49]  Gereon Hüttmann,et al.  Influence of laser parameters on nanoparticle-induced membrane permeabilization. , 2009, Journal of biomedical optics.

[50]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[51]  Detlef Lohse,et al.  A simple explanation of light emission in sonoluminescence , 1999, Nature.

[52]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[53]  F. Schotte,et al.  The realization of sub-nanosecond pump and probe experiments at the ESRF. European Synchrotron Radiation Facility. , 2003, Faraday discussions.

[54]  C. Cho,et al.  Origin of Temperature and Pressure Effects on the Radial Distribution Function of Water , 1999 .

[55]  Ekaterina Lukianova,et al.  Selective laser nano‐thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles , 2006, Lasers in surgery and medicine.

[56]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[57]  E. Lukianova-Hleb,et al.  Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. , 2009, Nano letters.

[58]  P. Corkum,et al.  Ultrafast Phenomena XVI , 2009 .

[59]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[60]  F. Mandl American Institute of Physics Handbook 3rd edn , 1973 .

[61]  Rebekah A Drezek,et al.  Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. , 2010, ACS nano.

[62]  Bradley P. Barber,et al.  Observation of synchronous picosecond sonoluminescence , 1991, Nature.

[63]  G. Yadigaroglu,et al.  An investigation of microscale explosive vaporization of water on an ultrathin Pt wire , 2002 .

[64]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[65]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[66]  A. Miotello,et al.  Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature , 1999 .

[67]  Jae Hyuk Lee,et al.  Spatiotemporal reaction kinetics of an ultrafast photoreaction pathway visualized by time-resolved liquid x-ray diffraction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Otter Temperaturabhängigkeit der optischen Konstanten massiver Metalle , 1961 .

[69]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[70]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[71]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[72]  Ji-Xin Cheng,et al.  Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity , 2007, Advanced materials.

[73]  A. Henglein,et al.  Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles , 2000 .

[74]  M. Wuttig,et al.  Optical and structural changes of silver nanoparticles during photochromic transformation , 2006 .

[75]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[77]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[78]  M. Wulff,et al.  X-ray “filming” of atomic motions in chemical reactions , 2004 .

[79]  R. Brinkmann,et al.  Self-limited growth of laser-induced vapor bubbles around single microabsorbers , 2008 .

[80]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .