Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows

For almost two decades the properties of ‘dwarf’ galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies—bulgeless and with shallow central dark-matter profiles—arise naturally in these simulations.

[1]  W. Goddard,et al.  The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells , 1992 .

[2]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[3]  B. Robertson,et al.  Molecular Hydrogen and Global Star Formation Relations in Galaxies , 2007, 0710.2102.

[4]  The dark matter problem in disc galaxies , 2000, astro-ph/0003199.

[5]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[6]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[7]  J. Gerssen,et al.  The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ≈ 3 , 2005, Nature.

[8]  R. Kennicutt,et al.  DWARF GALAXY STARBURST STATISTICS IN THE LOCAL VOLUME , 2008, 0810.5132.

[9]  M. Bershady,et al.  The Kinematics in the Core of the Low Surface Brightness Galaxy DDO 39 , 2003, astro-ph/0303052.

[10]  H. Mo,et al.  Galaxy formation in pre-processed dark haloes , 2003, astro-ph/0311459.

[11]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[12]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[13]  R. Swaters,et al.  The angular momentum content of dwarf galaxies: new challenges for the theory of galaxy formation , 2001, astro-ph/0105082.

[14]  P. Coles The state of the Universe , 2005, Nature.

[15]  J. Wadsley,et al.  Stellar Feedback in Dwarf Galaxy Formation , 2007, Science.

[16]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[17]  G. Stinson,et al.  Damped Lyman α systems in galaxy formation simulations , 2008, 0804.4474.

[18]  J. Makino,et al.  Toward First-Principle Simulations of Galaxy Formation: I. How Should We Choose Star-Formation Criteria in High-Resolution Simulations of Disk Galaxies? , 2008, 0802.0961.

[19]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[20]  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[21]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[22]  M. Blanton,et al.  Testing Cold Dark Matter with the Low-Mass Tully-Fisher Relation , 2007, 0707.3813.

[24]  A. Dekel,et al.  Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation , 2002, astro-ph/0201187.

[25]  Is There Evidence for Flat Cores in the Halos of Dwarf Galaxies? The Case of NGC 3109 and NGC 6822 , 2005, astro-ph/0509644.

[26]  Simon D. M. White,et al.  Hierarchical galaxy formation : overmerging and the formation of an X-ray cluster , 1993 .

[27]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[28]  P. Madau The Ultraviolet Extragalactic Background , 1995 .

[29]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[30]  Cosmology: small-scale issues , 2009, 0909.2247.

[31]  Angular Momentum Transfer in Dark Matter Halos: Erasing the Cusp , 2006, astro-ph/0603051.

[32]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[33]  M. Blanton,et al.  The Baryon Content of Extremely Low Mass Dwarf Galaxies , 2006, astro-ph/0608295.

[34]  George Lake,et al.  Cold collapse and the core catastrophe , 1999 .

[35]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[36]  C. Frenk,et al.  Bulges versus discs: the evolution of angular momentum in cosmological simulations of galaxy formation , 2007, 0710.2901.

[37]  B. Groves,et al.  High-resolution panchromatic spectral models of galaxies including photoionization and dust , 2009, 0906.2156.

[38]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[39]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[40]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[41]  Dwarf galaxies in voids: suppressing star formation with photoheating , 2005, astro-ph/0501304.

[42]  A. Klypin,et al.  THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.

[43]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[44]  Properties of Galactic Outflows: Measurements of the Feedback from Star Formation , 1998, astro-ph/9810233.

[45]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[46]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[47]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[48]  J. Wadsley,et al.  The removal of cusps from galaxy centres by stellar feedback in the early Universe , 2006, Nature.

[49]  J. Primack Cosmology: small-scale issues , 2009, 0902.2506.

[50]  F. Walter,et al.  HIGH-RESOLUTION ROTATION CURVES AND GALAXY MASS MODELS FROM THINGS , 2008, 0810.2100.

[51]  A. Dutton On the origin of exponential galaxy discs , 2008, 0810.5164.

[52]  F. Walter,et al.  Holes and Shells in the Interstellar Medium of the Nearby Dwarf Galaxy IC 2574 , 1999, astro-ph/9904002.

[53]  P. Jonsson sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.

[54]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[55]  Yong-Seon Song,et al.  Determination of cosmological parameters from cosmic shear data , 2004 .

[56]  E. Tasker,et al.  The Effect of the Interstellar Model on Star Formation Properties in Galactic Disks , 2007, 0709.1972.

[57]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[58]  K. Abromeit Music Received , 2023, Notes.