Rigidity of proper colorings of $${\mathbb {Z}}^{d}$$

A proper $q$-coloring of a domain in $\mathbb{Z}^d$ is a function assigning one of $q$ colors to each vertex of the domain such that adjacent vertices are colored differently. Sampling a proper $q$-coloring uniformly at random, does the coloring typically exhibit long-range order? It has been known since the work of Dobrushin that no such ordering can arise when $q$ is large compared with $d$. We prove here that long-range order does arise for each $q$ when $d$ is sufficiently high, and further characterize all periodic maximal-entropy Gibbs states for the model. Ordering is also shown to emerge in low dimensions if the lattice $\mathbb{Z}^d$ is replaced by $\mathbb{Z}^{d_1}\times\mathbb{T}^{d_2}$ with $d_1\ge 2$, $d=d_1+d_2$ sufficiently high and $\mathbb{T}$ a cycle of even length. The results address questions going back to Berker--Kadanoff (1980), Kotecký (1985) and Salas--Sokal (1997).

[1]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  S. Miracle-Sole,et al.  Equilibrium States of the Ising Model in the Two-Phase Region , 1972 .

[3]  Yvan Alain Velenik,et al.  Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .

[4]  Prasad Tetali,et al.  On Weighted Graph Homomorphisms , 2001, Graphs, Morphisms and Statistical Physics.

[5]  J. Jonasson Uniqueness of uniform random colorings of regular trees , 2002 .

[6]  Dana Randall,et al.  Phase coexistence and torpid mixing in the 3-coloring model on ℤd , 2012, SIAM J. Discret. Math..

[7]  Prasad Tetali,et al.  Slow mixing of Glauber dynamics for the hard-core model on regular bipartite graphs , 2006 .

[8]  Counting Regions with Bounded Surface Area , 2007 .

[9]  Maury Bramson,et al.  Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten , 2011 .

[10]  A. A. SAPOZHENKO On the number of antichains in multilevelled ranked posets , 1991 .

[11]  Jeff Kahn,et al.  Generalized Rank Functions and an Entropy Argument , 1999, J. Comb. Theory, Ser. A.

[12]  Alan D. Sokal,et al.  Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory , 1992 .

[13]  Robert M. Burton,et al.  Quite weak Bernoulli with exponential rate and percolation for random fields , 1995 .

[14]  Dana Randall,et al.  Torpid mixing of local Markov chains on 3-colorings of the discrete torus , 2007, SODA '07.

[15]  J. Lebowitz,et al.  Improved Peierls Argument for High-Dimensional Ising Models , 1998, cond-mat/9809158.

[16]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[17]  G. Brightwell,et al.  Random colorings of a cayley tree , 2002 .

[18]  Jeff Kahn,et al.  On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.

[19]  Ron Peled,et al.  A condition for long-range order in discrete spin systems with application to the antiferromagnetic Potts model , 2017, 1712.03699.

[20]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[21]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.

[22]  Prasad Tetali,et al.  Slow mixing of Glauber dynamics for the hard-core model on the hypercube , 2004, SODA '04.

[23]  Leslie Ann Goldberg,et al.  Strong Spatial Mixing with Fewer Colors for Lattice Graphs , 2005, SIAM J. Comput..

[24]  Tom C. Lubensky,et al.  Statistics of lattice animals and dilute branched polymers , 1979 .

[25]  David J. Galvin,et al.  On homomorphisms from the Hamming cube to Z , 2003 .

[26]  David Galvin,et al.  Sampling 3-colourings of regular bipartite graphs , 2007, ArXiv.

[27]  Béla Bollobás The Art of Mathematics - Coffee Time in Memphis , 2006 .

[28]  Wojciech Samotij,et al.  Odd cutsets and the hard-core model on Z^d , 2011 .

[29]  David Galvin,et al.  H-coloring tori , 2011, J. Comb. Theory, Ser. B.

[30]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[31]  Ohad N. Feldheim,et al.  Long-range order in the 3-state antiferromagnetic Potts model in high dimensions , 2015, Journal of the European Mathematical Society.

[32]  David Galvin,et al.  On phase transition in the hard-core model on ${\bf Z}^d$ , 2012, 1206.3144.

[33]  Gordon Slade Lattice Trees, Percolation and Super-Brownian Motion , 1999 .

[34]  Ohad N. Feldheim,et al.  Rigidity of 3-colorings of the discrete torus , 2013, 1309.2340.

[35]  J. Banavar,et al.  Ordering and Phase Transitions in Antiferromagnetic Potts Models , 1980 .

[36]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[37]  Yufei Zhao,et al.  On replica symmetry of large deviations in random graphs , 2012, Random Struct. Algorithms.

[38]  David Galvin Sampling independent sets in the discrete torus , 2008 .

[39]  Adam Timar,et al.  Bondary-connectivity via graph theory , 2007, 0711.1713.

[40]  Y. Sinai,et al.  Phase diagrams of classical lattice systems continuation , 1976 .

[41]  T. Xiang,et al.  Partial long-range order in antiferromagnetic Potts models , 2014, 1410.6507.

[42]  I. Snopce,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 2007 .

[43]  David J. Galvin Bounding the Partition Function of Spin-Systems , 2006, Electron. J. Comb..

[44]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[45]  R. Peled,et al.  Long-range order in discrete spin systems , 2020, 2010.03177.

[46]  Y. Sinai,et al.  Phase diagrams of classical lattice systems , 1975 .

[47]  Jeff Kahn,et al.  Range of cube-indexed random walk , 2001 .

[48]  Ron Peled,et al.  High-Dimensional Lipschitz Functions are Typically Flat , 2010, 1005.4636.

[49]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[50]  Ohad N. Feldheim,et al.  The Growth Constant of Odd Cutsets in High Dimensions , 2018, Comb. Probab. Comput..

[51]  Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Eric Vigoda,et al.  Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[53]  David Galvin,et al.  H-colouring bipartite graphs , 2012, J. Comb. Theory, Ser. B.

[54]  L. Kadanoff,et al.  CORRIGENDUM: Ground-state entropy and algebraic order at low temperatures , 1980 .

[55]  Mokshay M. Madiman,et al.  Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.

[56]  A. Sokal,et al.  Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem , 1996, cond-mat/9603068.

[57]  Jean Picard,et al.  The Lace Expansion and its Applications , 2006 .

[58]  Me Misiurewicz,et al.  A short proof of the variational principle for a ZN+ action on a compact space , 1975 .

[59]  Robert H. Swendsen,et al.  Intermediate-temperature ordering in a three-state antiferromagnetic Potts model , 1998 .