The Sobolev embedding constant on Lie groups
暂无分享,去创建一个
[1] S. Meda. On the Littlewood-Paley-Stein $g$-function , 1995 .
[2] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[3] Michael Ruzhansky,et al. Best constants in Sobolev and Gagliardo–Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations , 2017, Calculus of Variations and Partial Differential Equations.
[4] Marion Kee,et al. Analysis , 2004, Machine Translation.
[5] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[6] M. Cowling,et al. The Hausdorff–Young inequality on Lie groups , 2018, Mathematische Annalen.
[7] G. Lu,et al. A new approach to sharp Moser–Trudinger and Adams type inequalities: A rearrangement-free argument , 2013 .
[8] T. Coulhon,et al. Sobolev algebras on Lie groups and Riemannian manifolds , 2001 .
[9] Y. Sire,et al. Nonlocal Poincaré inequalities on Lie groups with polynomial volume growth and Riemannian manifolds , 2011 .
[10] R. Lipsman. Abstract harmonic analysis , 1968 .
[11] W. Hebisch,et al. Spectral multipliers for sub-Laplacians with drift on Lie groups , 2005 .
[12] Geometric Aspects of Harmonic Analysis , 2021, Springer INdAM Series.
[13] A sharp Trudinger-Moser type inequality for unbounded domains in R 2 , 2005 .
[14] M. Peloso,et al. Sobolev algebras on nonunimodular Lie groups , 2017, Calculus of Variations and Partial Differential Equations.
[15] T. Aubin,et al. Problèmes isopérimétriques et espaces de Sobolev , 1976 .
[16] T. Ozawa. On critical cases of Sobolev inequalities , 1992 .
[17] B. Ruf,et al. A sharp Trudinger-Moser type inequality for unbounded domains in R 2 , 2005 .
[18] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[19] M. Cowling. Harmonic analysis on semigroups , 1983 .
[20] G. Folland,et al. Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .
[21] Michael Ruzhansky,et al. Sobolev spaces on graded lie groups , 2017 .
[22] Neil S. Trudinger,et al. On Imbeddings into Orlicz Spaces and Some Applications , 1967 .
[23] J. Gauthier,et al. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.
[24] M. Peloso,et al. Sobolev spaces on Lie groups: Embedding theorems and algebra properties , 2018, Journal of Functional Analysis.
[25] N. Meyers,et al. Bessel potentials. Inclusion relations among classes of exceptional sets , 1971 .
[26] N. Varopoulos. Analysis on Lie groups , 1988 .
[27] M. Peloso,et al. Besov and Triebel–Lizorkin spaces on Lie groups , 2019, Mathematische Annalen.
[28] Michael Ruzhansky,et al. Critical Gagliardo–Nirenberg, Trudinger, Brezis–Gallouet–Wainger inequalities on graded groups and ground states , 2017, Communications in Contemporary Mathematics.
[29] Elliott H. Lieb,et al. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .
[30] Y. Guivarc’h. Croissance polynomiale et périodes des fonctions harmoniques , 1973 .
[31] Marco M. Peloso,et al. Potential Spaces on Lie Groups , 2019, Geometric Aspects of Harmonic Analysis.
[32] P. Heywood. Trigonometric Series , 1968, Nature.
[33] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .