The Sobolev embedding constant on Lie groups

In this paper we estimate the Sobolev embedding constant on general noncompact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with a left invariant measure. The bound that we obtain, up to a constant depending only on the group and its sub-Riemannian structure, reduces to the best known bound for the classical inhomogeneous Sobolev embedding constant on R. As an application, we prove local and global Moser–Trudinger inequalities.

[1]  S. Meda On the Littlewood-Paley-Stein $g$-function , 1995 .

[2]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[3]  Michael Ruzhansky,et al.  Best constants in Sobolev and Gagliardo–Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations , 2017, Calculus of Variations and Partial Differential Equations.

[4]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[5]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[6]  M. Cowling,et al.  The Hausdorff–Young inequality on Lie groups , 2018, Mathematische Annalen.

[7]  G. Lu,et al.  A new approach to sharp Moser–Trudinger and Adams type inequalities: A rearrangement-free argument , 2013 .

[8]  T. Coulhon,et al.  Sobolev algebras on Lie groups and Riemannian manifolds , 2001 .

[9]  Y. Sire,et al.  Nonlocal Poincaré inequalities on Lie groups with polynomial volume growth and Riemannian manifolds , 2011 .

[10]  R. Lipsman Abstract harmonic analysis , 1968 .

[11]  W. Hebisch,et al.  Spectral multipliers for sub-Laplacians with drift on Lie groups , 2005 .

[12]  Geometric Aspects of Harmonic Analysis , 2021, Springer INdAM Series.

[13]  A sharp Trudinger-Moser type inequality for unbounded domains in R 2 , 2005 .

[14]  M. Peloso,et al.  Sobolev algebras on nonunimodular Lie groups , 2017, Calculus of Variations and Partial Differential Equations.

[15]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[16]  T. Ozawa On critical cases of Sobolev inequalities , 1992 .

[17]  B. Ruf,et al.  A sharp Trudinger-Moser type inequality for unbounded domains in R 2 , 2005 .

[18]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[19]  M. Cowling Harmonic analysis on semigroups , 1983 .

[20]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[21]  Michael Ruzhansky,et al.  Sobolev spaces on graded lie groups , 2017 .

[22]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[23]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[24]  M. Peloso,et al.  Sobolev spaces on Lie groups: Embedding theorems and algebra properties , 2018, Journal of Functional Analysis.

[25]  N. Meyers,et al.  Bessel potentials. Inclusion relations among classes of exceptional sets , 1971 .

[26]  N. Varopoulos Analysis on Lie groups , 1988 .

[27]  M. Peloso,et al.  Besov and Triebel–Lizorkin spaces on Lie groups , 2019, Mathematische Annalen.

[28]  Michael Ruzhansky,et al.  Critical Gagliardo–Nirenberg, Trudinger, Brezis–Gallouet–Wainger inequalities on graded groups and ground states , 2017, Communications in Contemporary Mathematics.

[29]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[30]  Y. Guivarc’h Croissance polynomiale et périodes des fonctions harmoniques , 1973 .

[31]  Marco M. Peloso,et al.  Potential Spaces on Lie Groups , 2019, Geometric Aspects of Harmonic Analysis.

[32]  P. Heywood Trigonometric Series , 1968, Nature.

[33]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .