Time-Multiplexed Methods for Optical Quantum Information Processing

Quantum information processing with photons can be greatly enhanced by incorporating time-multiplexing methods. Not only can time-bin encoding be very useful in its own right, multiplexing techniques can lead to more efficient single- and multi-photon sources, improved detectors, and high-bandwidth quantum memories, as well as enhanced applications such as quantum random walks and entanglement swapping. Here we present an overview of some of the methods used and the results achievable when explicitly using the time degree of freedom of photons.

[1]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[2]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics Express.

[3]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[4]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[5]  Paul G. Kwiat,et al.  Photonic State Tomography , 2005 .

[6]  J. D. Franson,et al.  Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.

[7]  H. Lenstra,et al.  Factoring integers with the number field sieve , 1993 .

[8]  Peter C Humphreys,et al.  On-chip low loss heralded source of pure single photons. , 2013, Optics express.

[9]  Vikas Anant,et al.  Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. , 2006, Optics express.

[10]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[11]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[12]  Jianshu Cao,et al.  Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method , 2014 .

[13]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[14]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[15]  A. Schreiber,et al.  A 2D Quantum Walk Simulation of Two-Particle Dynamics , 2012, Science.

[16]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[17]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[18]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[19]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[20]  Nicolas Godbout,et al.  Cluster-state quantum computing in optical fibers , 2007 .

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[23]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[24]  Dirk Englund,et al.  Efficient generation of single and entangled photons on a silicon photonic integrated chip , 2011 .

[25]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[26]  Kevin McCusker,et al.  Efficient quantum optical state engineering and applications , 2012 .

[27]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[28]  Jeffrey H. Shapiro,et al.  Practical high-dimensional quantum key distribution with decoy states , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[29]  T. Pittman,et al.  Viewpoint: It’s a Good Time for Time-Bin Qubits , 2013 .

[30]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[31]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[32]  M. Horodecki,et al.  On quantum advantage in dense coding , 2007, quant-ph/0701134.

[33]  R. Bennink,et al.  Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. , 2010, Physical review letters.

[34]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[35]  G. Ball,et al.  Programmable fiber optic delay line , 1994, IEEE Photonics Technology Letters.

[36]  P. Kwiat,et al.  High-efficiency single-photon generation via large-scale active time multiplexing , 2018, Science Advances.

[37]  Daniel J. Gauthier,et al.  Security of high-dimensional quantum key distribution protocols using Franson interferometers , 2013, 1305.4541.

[38]  Hiroki Takesue,et al.  Implementation of quantum state tomography for time-bin entangled photon pairs. , 2009, Optics express.

[39]  P. Kok,et al.  Quantum lithography, entanglement and Heisenberg-limited parameter estimation , 2004, quant-ph/0402083.

[40]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[41]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[42]  M. J. Withford,et al.  Two-photon quantum walks in an elliptical direct-write waveguide array , 2011, 1103.0604.

[43]  Ujjwal Sen,et al.  Distributed quantum dense coding with two receivers in noisy environments , 2015 .

[44]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[45]  Enrique Martin-Lopez,et al.  Active Temporal Multiplexing of Photons , 2015, 1503.01215.

[46]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[47]  Brian J Smith,et al.  Conditional preparation of single photons using parametric downconversion: a recipe for purity , 2008, 0807.1409.

[48]  S. Etcheverry,et al.  Quantum key distribution session with 16-dimensional photonic states , 2013, Scientific Reports.

[49]  J. D. Franson,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[50]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[51]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[52]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[53]  H. Eisenberg,et al.  Entanglement swapping between photons that have never coexisted. , 2012, Physical review letters.

[54]  Jeffrey H. Shapiro,et al.  Photon-efficient quantum cryptography with pulse-position modulation , 2015 .

[55]  M. Mohseni,et al.  Hyperentanglement-enabled direct characterization of quantum dynamics. , 2012, Physical review letters.

[56]  Fuguo Deng,et al.  Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission , 2015, Scientific Reports.

[57]  Takeshi Toyama,et al.  Synchronization of optical photons for quantum information processing , 2015, Science Advances.

[58]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[59]  Daniel J. Gauthier,et al.  Higher-Dimensional Quantum Cryptography , 2013 .

[60]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[61]  John M Donohue,et al.  Coherent ultrafast measurement of time-bin encoded photons. , 2013, Physical review letters.

[62]  Damien Bonneau,et al.  Effect of loss on multiplexed single-photon sources , 2014, 1409.5341.

[63]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[64]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[65]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[66]  Fabio Sciarrino,et al.  Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory , 2015, Nature Communications.

[67]  Wolfgang Tittel,et al.  Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits. , 2015, Physical review letters.

[68]  A. Kuhn,et al.  A Single-Photon Server with Just One Atom , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[69]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[70]  Philippe Goldner,et al.  Storage of hyperentanglement in a solid-state quantum memory , 2014, 1412.6488.

[71]  Miguel A. Larotonda,et al.  Multiplexing photons with a binary division strategy , 2014 .

[72]  P. Kwiat,et al.  Efficient optical quantum state engineering. , 2009, Physical review letters.

[73]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[74]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[75]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[76]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[77]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[78]  Alan L. Migdall,et al.  Deterministic generation of single photons via multiplexing repetitive parametric downconversions , 2013 .

[79]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[80]  N. Godbout,et al.  Manipulating time-bin qubits with fiber optics components , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[81]  Alexander V. Sergienko,et al.  High-capacity quantum key distribution via hyperentangled degrees of freedom , 2013, 1306.3489.

[82]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[83]  H. de Riedmatten,et al.  Solid State Spin-Wave Quantum Memory for Time-Bin Qubits. , 2015, Physical review letters.

[84]  M.S.Shikakhwa,et al.  Gauge Covariance and Spin Current Conservation in the Gauge Field Formulation of Systems with Spin-Orbit Coupling , 2016, 1601.04158.

[85]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[86]  Kai Chen,et al.  Multistage entanglement swapping. , 2008, Physical review letters.

[87]  Stephen M. Barnett,et al.  Mutually unbiased measurements for high-dimensional time-bin–based photonic states , 2013, 1311.2773.

[88]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[89]  Peter J. Mosley,et al.  Exploring the limits of multiplexed photon-pair sources for the preparation of pure single-photon states , 2014, 1409.1394.

[90]  I. Sagnes,et al.  Deterministic and electrically tunable bright single-photon source , 2014, Nature Communications.

[91]  Dirk Englund,et al.  Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. , 2013, Physical review letters.

[92]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[93]  James Fujimoto,et al.  Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. , 2003, Optics express.

[94]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[95]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[96]  J. Fan,et al.  Demonstrating high symmetric single-mode single-photon heralding efficiency in spontaneous parametric downconversion , 2013, CLEO: 2013.

[97]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[98]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[99]  D. Korystov,et al.  Quantum memory for squeezed light. , 2007, Physical review letters.

[100]  Jeremy L O'Brien,et al.  Active temporal and spatial multiplexing of photons , 2016 .

[101]  R. Laflamme,et al.  Linear Optics Quantum Computation: an Overview , 2005 .

[102]  Akira Furusawa,et al.  Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function , 2013, 1309.3516.

[103]  C. Robert,et al.  Simple, stable, and compact multiple-reflection optical cell for very long optical paths. , 2007, Applied optics.

[104]  Thomas Udem,et al.  Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments , 2010 .

[105]  Marijn A. M. Versteegh,et al.  Single pairs of time-bin-entangled photons , 2015, 1507.01876.

[106]  Christian Schneider,et al.  Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. , 2014, Nano letters.

[107]  Philippe Grangier,et al.  Dynamics of a pulsed continuous-variable quantum memory (6 pages) , 2005, quant-ph/0512175.

[108]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[109]  Andreas Christ,et al.  Probing multimode squeezing with correlation functions , 2010, 1012.0262.

[110]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[111]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[112]  D. Ritchie,et al.  High performance single photon sources from photolithographically defined pillar microcavities. , 2005, Optics express.

[113]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[114]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.