Scale selection in nonlinear fracture mechanics of heterogeneous materials

A new adaptive multiscale method for the non-linear fracture simulation of heterogeneous materials is proposed. The two major sources of errors in the finite element simulation are discretization and modelling errors. In the failure problems, the discretization error increases due to the strain localization which is also a source for the error in the homogenization of the underlying microstructure. In this paper, the discretization error is controlled by an adaptive mesh refinement procedure following the Zienkiewicz–Zhu technique, and the modelling error, which is the resultant of homogenization of microstructure, is controlled by replacing the macroscopic model with the underlying heterogeneous microstructure. The scale adaptation criterion which is based on an error indicator for homogenization is employed for our non-linear fracture problem. The control of both discretization and homogenization errors is the main feature of the proposed multiscale method.

[1]  J. Tinsley Oden,et al.  Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms , 2009 .

[2]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[3]  J. Fish,et al.  A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales , 2001 .

[4]  Somnath Ghosh,et al.  Concurrent multi-level model for damage evolution in microstructurally debonding composites , 2007 .

[5]  G. Allaire Homogenization and two-scale convergence , 1992 .

[6]  Marc Duflot,et al.  Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .

[7]  J. Tinsley Oden,et al.  A new adaptive modeling strategy based on optimal control for atomic-to-continuum coupling simulations , 2011 .

[8]  Peter Wriggers,et al.  A method of substructuring large-scale computational micromechanical problems , 2001 .

[9]  G. Milton The Theory of Composites , 2002 .

[10]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[11]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[12]  Francesca Rapetti,et al.  Basics and some applications of the mortar element method , 2005 .

[13]  Daniel Rixen,et al.  On micro-to-macro connections in domain decomposition multiscale methods , 2012 .

[14]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[15]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[16]  Franck J. Vernerey,et al.  An adaptive concurrent multiscale method for microstructured elastic solids , 2012 .

[17]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[18]  Fredrik Larsson,et al.  On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging , 2011 .

[19]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[20]  Ahmad Akbari Rahimabadi,et al.  Error controlled adaptive multiscale method for fracture in polycrystalline materials , 2014 .

[21]  Juan José Ródenas,et al.  Certification of projection‐based reduced order modelling in computational homogenisation by the constitutive relation error , 2013, ArXiv.

[22]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[23]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[24]  Hung Nguyen-Xuan,et al.  Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity , 2012, ArXiv.

[25]  Marc Duflot,et al.  On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods , 2011, ArXiv.

[26]  Mgd Marc Geers,et al.  Computational homogenization for heterogeneous thin sheets , 2010 .

[27]  J. Tinsley Oden,et al.  Multi-scale goal-oriented adaptive modeling of random heterogeneous materials , 2006 .

[28]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[29]  Peter Wriggers,et al.  A domain decomposition method for bodies with heterogeneous microstructure basedon material regularization , 1999 .

[30]  P Kerfriden,et al.  A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. , 2012, Computer methods in applied mechanics and engineering.

[31]  A. Ghosh,et al.  Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method , 2013 .

[32]  Paul T. Bauman,et al.  An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations , 2009 .

[33]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[34]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[35]  Alberto Corigliano,et al.  Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens , 1996 .

[36]  S. Bordas,et al.  A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .

[37]  S. Bordas,et al.  A simple error estimator for extended finite elements , 2007 .

[38]  Huajian Gao,et al.  Ultra-large scale simulations of dynamic materials failure , 2006 .

[39]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[40]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Olivier Allix,et al.  A three-scale domain decomposition method for the 3D analysis of debonding in laminates , 2009, 1109.6111.

[43]  W. Marsden I and J , 2012 .

[44]  Olivier Allix,et al.  On the control of the load increments for a proper description of multiple delamination in a domain decomposition framework , 2010, ArXiv.

[45]  J. T. Oden,et al.  Adaptive modeling of wave propagation in heterogeneous elastic solids , 2004 .

[46]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[47]  Crack-Tip Parameters in Polycrystalline Plates with Soft Grain Boundaries , 2008 .

[48]  David Dureisseix,et al.  Multi‐scale domain decomposition method for large‐scale structural analysis with a zooming technique: Application to plate assembly , 2009 .

[49]  Christian Miehe,et al.  Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction , 2002 .

[50]  Grégoire Allaire A brief introduction to homogenization and miscellaneous applications , 2012 .

[51]  P. Wriggers,et al.  An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures , 2011 .

[52]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[53]  T. Rabczuk,et al.  Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation , 2014 .

[54]  S. Forest,et al.  Asymptotic analysis of heterogeneous Cosserat media , 2001 .

[55]  O. González-Estrada,et al.  Accurate recovery-based upper error bounds for the extended finite element framework , 2010 .

[56]  T. Zohdi Overall Solution-Difference Bounds on the Effects of Material Inhomogeneities , 2000 .

[57]  Peter Wriggers,et al.  Computational micro-macro material testing , 2001 .

[58]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[59]  F. J. Fuenmayor,et al.  Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery , 2012, 1209.3102.

[60]  Jörg F. Unger,et al.  Multiscale Modeling of Concrete , 2011 .