Investigation of generalization ability of a trained stochastic kinetic model of neuron

In this work we focus on the generalization ability of a biological neuron model. We consider a Hodgkin–Huxley type of biological neuron model, based on Markov kinetic schemes, trained with the gradient descent algorithm.

[1]  Herbert Witte,et al.  Improving Generalization Capabilities of Dynamic Neural Networks , 2004, Neural Computation.

[2]  Herbert Witte,et al.  Structure optimization of neural networks with the A*-algorithm , 1997, IEEE Trans. Neural Networks.

[3]  Idan Segev,et al.  Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing , 1998, Neural Computation.

[4]  Aleksandra Swietlicka Trained stochastic model of biological neural network used in image processing task , 2015, Appl. Math. Comput..

[5]  Andrzej Rybarczyk,et al.  Random number generation system improving simulations of stochastic models of neural cells , 2013, Computing.

[6]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[7]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[10]  Andrzej Rybarczyk,et al.  The stochastic, Markovian, Hodgkin-Huxley type of mathematical model of the neuron , 2015 .

[11]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[12]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[13]  Pedro V. Carelli,et al.  Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. , 2005, Journal of neurophysiology.

[14]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[15]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[16]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[17]  Andrzej Rybarczyk,et al.  Gradient method of learning for stochastic kinetic model of neuron , 2013 .

[18]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[19]  Anders Krogh,et al.  A Simple Weight Decay Can Improve Generalization , 1991, NIPS.

[20]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[21]  S. Doi,et al.  Parameter estimation of various Hodgkin-Huxley-type neuronal models using a gradient-descent learning method , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[22]  Kenji Doya,et al.  A Hodgkin-Huxley Type Neuron Model That Learns Slow Non-Spike Oscillations , 1993, NIPS.