Processing of conductive polyimide using radiations

Abstract PMDA-ODA polyimide is shown to become electrically conducting and optically absorbant on exposure to the 488 nm radiation of an argon ion laser or irradiation with 100 keV Ne + ions. Electron photoelectron spectroscopy has been used to study the chemical modification and structure of the conducting phase induced by irradiation. The ESCA spectrum of the Ne + -irradiated film indicates drastic loss of oxygen and nitrogen resulting in a modified structure. The C 1s spectrum shows these modifications with decarbonylation of the imide group (peak at 288.4 eV) and decrease of the component assigned to carbon in the PMDA ring or carbons bonded to nitrogen or oxygen (285.6 eV), whereas the main C 1s component (284.6 eV) is attributed to graphitic carbon. The plasmon observed at 7.8 eV in the UPS spectrum confirms the graphite-like electronic structure of the treated polyimide. Optical and electrical properties are interpreted by the formation of graphite-like inclusions dispersed in a dielectric matrix. Potential applications in the field of interconnection are discussed.

[1]  C. Oliveri,et al.  Esca and reels characterization of electrically conductive polyimide obtained by ion bombardment in the keV range , 1988 .

[2]  J. Davenas Laser and ion beam processing of conductive polyimide , 1989 .

[3]  J. Duraud,et al.  XPS as a tool for the investigation of polymers irradiated by energetic ions , 1988 .

[4]  G. Boiteux,et al.  Role of the modifications induced by ion beam irradiation in the optical and conducting properties of polyimide , 1988 .

[5]  I. Loh,et al.  Conducting polymers by ion implantation , 1988 .

[6]  P. Bodö,et al.  Ion bombardment and titanium film growth on polyimide , 1988 .

[7]  P. Baeri,et al.  Chemical effects of ion implantation on solid benzene , 1980 .

[8]  G. Boiteux,et al.  Relation between structure and electronic properties of ion irradiated polymers , 1989 .

[9]  G. Boiteux,et al.  Speculations on a mechanism for the ion beam induced degradation of polyimide , 1989 .

[10]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[11]  C. A. Murray,et al.  Dynamics of ion beam modification of polymer films , 1983 .

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  T. Hioki,et al.  Electrical and optical properties of ion‐irradiated organic polymer Kapton H , 1983 .

[14]  Wasserman Fractal nature of electrical conductivity in ion-implanted polymers. , 1986, Physical review. B, Condensed matter.

[15]  C. A. Murray,et al.  Structural and chemical analysis of ion beam produced conductive regions on highly resistive organic films , 1984 .

[16]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[17]  I. Bertóti,et al.  XPS study on the thermal degradation of poly‐N,N′/4,4′‐diphenylether/pyromellitimide , 1986 .

[18]  A. Broers,et al.  On a new conducting polymer-pyrolyzed Kapton , 1980 .