Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
暂无分享,去创建一个
[1] Peter L. Duren,et al. Asymptotic Properties of Zeros of Hypergeometric Polynomials , 2001, J. Approx. Theory.
[2] Herbert Stahl,et al. Orthogonal polynomials with complex-valued weight function, I , 1986 .
[3] W. J. Studden,et al. Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials , 1994, math/9406224.
[4] Kathy Driver,et al. Zeros of the Hypergeometric Polynomials F(-n, b; -2n; z) , 2001, J. Approx. Theory.
[5] Andrei Mart,et al. On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .
[6] R. S. Varga,et al. On the zeros of Jacobi polynomials _{}^{(_{},_{})}() , 1979 .
[7] G. Grisetti,et al. Further Reading , 1984, IEEE Spectrum.
[8] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[9] Arno B. J. Kuijlaars,et al. The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .
[10] Kathy Driver,et al. Zeros of the hypergeometric polynomials F(−n, b; 2b; z) , 2000 .
[11] Andrei Martínez-Finkelshtein,et al. On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .
[12] Kathy Driver,et al. Trajectories of the zeros of hypergeometric polynomials F(−n, b; 2b; z) for b < − 1/2 , 2001 .
[13] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[14] A. Martínez-Finkelshtein,et al. Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .
[15] Kathy Driver,et al. Zeros of ultraspherical polynomials and the Hilbert-Klein formulas , 2001 .
[16] Mourad E. H. Ismail,et al. On asymptotics of Jacobi polynomials , 1991 .
[17] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[18] Christof Bosbach,et al. Strong asymptotics for Jacobi polynomials with varying weights , 1999 .
[19] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[20] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .
[21] A.B.J. Kuijlaars,et al. Orthogonality of Jacobi polynomials with general parameters , 2003 .
[22] A. Kuijlaars,et al. Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.
[23] Kathy Driver,et al. Asymptotic zero distribution of hypergeometric polynomials , 2004, Numerical Algorithms.
[24] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[25] Allan Pinkus,et al. Progress in Approximation Theory , 1991 .
[26] K. Driver,et al. Zeros of the Hypergeometric Polynomial F(-n, b; c; z) , 2001, 0812.0708.
[27] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[28] N. Ayırtman,et al. Univalent Functions , 1965, Series and Products in the Development of Mathematics.
[29] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[30] Kathy Driver,et al. Zeros of 3 F 2 hypergeometric polynomials , 2001 .
[31] Herbert Stahl,et al. Orthogonal polynomials with complex-valued weight function, II , 1986 .
[32] E. Rakhmanov,et al. EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .
[33] Jinho Baik,et al. Optimal tail estimates for directed last passage site percolation with geometric random variables , 2001 .
[34] D. Gitman,et al. Exact solutions of relativistic wave equations , 1990 .
[35] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[36] Andrei Martínez-Finkelshtein,et al. ZEROS OF JACOBI POLYNOMIALS WITH VARYING NON-CLASSICAL PARAMETERS , 2000 .
[37] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[38] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[39] GEORGE BOROS,et al. An integral hidden in Gradshetyn and Ryzik , 1999 .
[40] F. Olver. Asymptotics and Special Functions , 1974 .