Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour

Classical Jacobi polynomials Pn(α, β), with α,β > - 1, have a number of well-known properties, in particular the location of their zeros in the open interval (-1, 1). This property is no longer valid for other values of the parameters; in general, zeros are complex. In this paper we study the strong asymptotics of Jacobi polynomials where the real parameters αn, βn depend on n in such a way that limn→∞ αn/n = A, limn→∞ βn/n = B with A, B ∈ R. We restrict our attention to the case where the limits A, B are not both positive and take values outside of the triangle bounded by the straight lines A = 0, B = 0 and A + B + 2 = 0. As a corollary, we show that in the limit the zeros distribute along certain curves that constitute trajectories of a quadratic differential.The non-hermitian orthogonality relations for Jacobi polynomials with varying parameters lie in the core of our approach; in the cases we consider, these relations hold on a single contour of the complex plane. The asymptotic analysis is performed using the Deift-Zhou steepest descent method based on the Riemann-Hilbert reformulation of Jacobi polynomials.

[1]  Peter L. Duren,et al.  Asymptotic Properties of Zeros of Hypergeometric Polynomials , 2001, J. Approx. Theory.

[2]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[3]  W. J. Studden,et al.  Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials , 1994, math/9406224.

[4]  Kathy Driver,et al.  Zeros of the Hypergeometric Polynomials F(-n, b; -2n; z) , 2001, J. Approx. Theory.

[5]  Andrei Mart,et al.  On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .

[6]  R. S. Varga,et al.  On the zeros of Jacobi polynomials _{}^{(_{},_{})}() , 1979 .

[7]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[8]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[9]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[10]  Kathy Driver,et al.  Zeros of the hypergeometric polynomials F(−n, b; 2b; z) , 2000 .

[11]  Andrei Martínez-Finkelshtein,et al.  On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .

[12]  Kathy Driver,et al.  Trajectories of the zeros of hypergeometric polynomials F(−n, b; 2b; z) for b < − 1/2 , 2001 .

[13]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[14]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[15]  Kathy Driver,et al.  Zeros of ultraspherical polynomials and the Hilbert-Klein formulas , 2001 .

[16]  Mourad E. H. Ismail,et al.  On asymptotics of Jacobi polynomials , 1991 .

[17]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[18]  Christof Bosbach,et al.  Strong asymptotics for Jacobi polynomials with varying weights , 1999 .

[19]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[20]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[21]  A.B.J. Kuijlaars,et al.  Orthogonality of Jacobi polynomials with general parameters , 2003 .

[22]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[23]  Kathy Driver,et al.  Asymptotic zero distribution of hypergeometric polynomials , 2004, Numerical Algorithms.

[24]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[25]  Allan Pinkus,et al.  Progress in Approximation Theory , 1991 .

[26]  K. Driver,et al.  Zeros of the Hypergeometric Polynomial F(-n, b; c; z) , 2001, 0812.0708.

[27]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[28]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[29]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[30]  Kathy Driver,et al.  Zeros of 3 F 2 hypergeometric polynomials , 2001 .

[31]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[32]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[33]  Jinho Baik,et al.  Optimal tail estimates for directed last passage site percolation with geometric random variables , 2001 .

[34]  D. Gitman,et al.  Exact solutions of relativistic wave equations , 1990 .

[35]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[36]  Andrei Martínez-Finkelshtein,et al.  ZEROS OF JACOBI POLYNOMIALS WITH VARYING NON-CLASSICAL PARAMETERS , 2000 .

[37]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[38]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[39]  GEORGE BOROS,et al.  An integral hidden in Gradshetyn and Ryzik , 1999 .

[40]  F. Olver Asymptotics and Special Functions , 1974 .