Critical invariant circles in asymmetric and multiharmonic generalized standard maps

Abstract Invariant circles play an important role as barriers to transport in the dynamics of area-preserving maps. KAM theory guarantees the persistence of some circles for near-integrable maps, but far from the integrable case all circles can be destroyed. A standard method for determining the existence or nonexistence of a circle, Greene’s residue criterion, requires the computation of long-period orbits, which can be difficult if the map has no reversing symmetry. We use de la Llave’s quasi-Newton, Fourier-based scheme to numerically compute the conjugacy of a Diophantine circle conjugate to rigid rotation, and the singularity of a norm of a derivative of the conjugacy to predict criticality. We study near-critical conjugacies for families of rotational invariant circles in generalizations of Chirikov’s standard map. A first goal is to obtain evidence to support the long-standing conjecture that when circles breakup they form cantori, as is known for twist maps by Aubry–Mather theory. The location of the largest gaps is compared to the maxima of the potential when anti-integrable theory applies. A second goal is to support the conjecture that locally most robust circles have noble rotation numbers, even when the map is not reversible. We show that relative robustness varies inversely with the discriminant for rotation numbers in quadratic algebraic fields. Finally, we observe that the rotation number of the globally most robust circle generically appears to be a piecewise-constant function in two-parameter families of maps.

[1]  Kim,et al.  Simultaneous rational approximations in the study of dynamical systems. , 1986, Physical review. A, General physics.

[2]  Yasushige Watase,et al.  Introduction to Diophantine Approximation , 2015, Formaliz. Math..

[3]  Rafael de la Llave,et al.  A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .

[4]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[5]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[6]  B. M. Fulk MATH , 1992 .

[7]  James D. Meiss,et al.  Cantori for symplectic maps near the anti-integrable limit , 1992 .

[8]  A. Apte,et al.  Breakup of shearless meanders and "outer" tori in the standard nontwist map. , 2006, Chaos.

[9]  J. Stark,et al.  Locally most robust circles and boundary circles for area-preserving maps , 1992 .

[10]  A. Apte,et al.  Renormalization and destruction of 1/γ2 tori in the standard nontwist map , 2003 .

[11]  R. MacKay,et al.  Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation , 1989 .

[12]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[13]  G. R. W. Quispel,et al.  Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .

[14]  R. Llave,et al.  Smooth Ergodic Theory and Its Applications , 2001 .

[15]  R. Llave,et al.  A rigorous partial justification of Greene's criterion , 1992 .

[16]  Adam M. Fox,et al.  Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps , 2012, 1205.6143.

[17]  Ian Stewart,et al.  Tales of a Neglected Number , 1996 .

[18]  I. Percival Variational Principles for Invariant Tori and Cantori , 2008, Hamiltonian Dynamical Systems.

[19]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[20]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[21]  A. Apte,et al.  Regularity of critical invariant circles of the standard nontwist map , 2005 .

[22]  W. Bowen,et al.  Philadelphia , 1892 .

[23]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[24]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[25]  R. MacKay,et al.  Cantori for multiharmonic maps , 1993 .

[26]  J. Howard,et al.  Stochasticity and reconnection in Hamiltonian systems , 1984 .

[27]  A. Rau Variational Principles , 2021, Classical Mechanics.

[28]  Stephen Wiggins,et al.  A method for visualization of invariant sets of dynamical systems based on the ergodic partition. , 1999, Chaos.

[29]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[30]  Yi-sui Sun,et al.  Chaotic motion of comets in near-parabolic orbit: Mapping approaches , 1994 .

[31]  James D. Meiss,et al.  Resonances and Twist in Volume-Preserving Mappings , 2010, SIAM J. Appl. Dyn. Syst..

[32]  Philip J. Morrison,et al.  Magnetic field lines, Hamiltonian dynamics, and nontwist systems , 2000 .

[33]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[34]  Breakup of shearless invariant tori in cubic and quartic nontwist maps , 2012 .

[35]  J. Pöschel,et al.  A lecture on the classical KAM theorem , 2009, 0908.2234.

[36]  J. Moser On the Theory of Quasiperiodic Motions , 1966 .

[37]  I. Percival,et al.  Critical function and modular smoothing , 1990 .

[38]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[39]  R. MacKay Greene's residue criterion , 1992 .

[40]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[41]  J. Bialek,et al.  Fractal Diagrams for Hamiltonian Stochasticity , 1982, Hamiltonian Dynamical Systems.

[42]  J. Wilbrink Erratic behavior of invariant circles in standard-like mappings , 1987 .

[43]  N. Murray Critical function for the standard map , 1991 .

[44]  S. Aubry,et al.  Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .

[45]  R. MacKay,et al.  The one to two-hole transition for cantori , 1994 .

[46]  James D. Meiss,et al.  Visual explorations of dynamics: The standard map , 2008, 0801.0883.

[47]  J. Meiss The destruction of tori in volume-preserving maps , 2011, 1103.0050.

[48]  Arturo Olvera,et al.  Regularity Properties of Critical Invariant Circles of Twist Maps, and Their Universality , 2006, SIAM J. Appl. Dyn. Syst..

[49]  Y. Aizawa,et al.  Indicators of reconnection processes and transition to global chaos in nontwist maps , 1998, chao-dyn/9807024.

[50]  Julyan H. E. Cartwright,et al.  Chaotic advection in three-dimensional unsteady incompressible laminar flow , 1995, Journal of Fluid Mechanics.

[51]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[52]  R. Llave,et al.  Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation , 2010 .

[53]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[54]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[55]  J. Rogers Chaos , 1876 .

[56]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[57]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[58]  Greene,et al.  Scaling anomaly at the critical transition of an incommensurate structure. , 1987, Physical review. A, General physics.

[59]  R. Calleja,et al.  Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. , 2006, Chaos.

[60]  J. D. Szezech,et al.  Transport properties in nontwist area-preserving maps. , 2009, Chaos.

[61]  Julio M. Ottino,et al.  A dynamical systems approach to mixing and segregation of granular materials in tumblers , 2007 .

[62]  Rafael de la Llave,et al.  KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..

[63]  Shaun Bullett,et al.  Invariant circles for the piecewise linear standard map , 1986 .