Critical invariant circles in asymmetric and multiharmonic generalized standard maps
暂无分享,去创建一个
[1] Kim,et al. Simultaneous rational approximations in the study of dynamical systems. , 1986, Physical review. A, General physics.
[2] Yasushige Watase,et al. Introduction to Diophantine Approximation , 2015, Formaliz. Math..
[3] Rafael de la Llave,et al. A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .
[4] 日本物理学会,et al. Progress in Theoretical Physics , 1946, Nature.
[5] J. Mather,et al. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .
[6] B. M. Fulk. MATH , 1992 .
[7] James D. Meiss,et al. Cantori for symplectic maps near the anti-integrable limit , 1992 .
[8] A. Apte,et al. Breakup of shearless meanders and "outer" tori in the standard nontwist map. , 2006, Chaos.
[9] J. Stark,et al. Locally most robust circles and boundary circles for area-preserving maps , 1992 .
[10] A. Apte,et al. Renormalization and destruction of 1/γ2 tori in the standard nontwist map , 2003 .
[11] R. MacKay,et al. Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation , 1989 .
[12] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[13] G. R. W. Quispel,et al. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .
[14] R. Llave,et al. Smooth Ergodic Theory and Its Applications , 2001 .
[15] R. Llave,et al. A rigorous partial justification of Greene's criterion , 1992 .
[16] Adam M. Fox,et al. Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps , 2012, 1205.6143.
[17] Ian Stewart,et al. Tales of a Neglected Number , 1996 .
[18] I. Percival. Variational Principles for Invariant Tori and Cantori , 2008, Hamiltonian Dynamical Systems.
[19] S. Aubry. The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .
[20] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[21] A. Apte,et al. Regularity of critical invariant circles of the standard nontwist map , 2005 .
[22] W. Bowen,et al. Philadelphia , 1892 .
[23] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[24] J. Meiss. Symplectic maps, variational principles, and transport , 1992 .
[25] R. MacKay,et al. Cantori for multiharmonic maps , 1993 .
[26] J. Howard,et al. Stochasticity and reconnection in Hamiltonian systems , 1984 .
[27] A. Rau. Variational Principles , 2021, Classical Mechanics.
[28] Stephen Wiggins,et al. A method for visualization of invariant sets of dynamical systems based on the ergodic partition. , 1999, Chaos.
[29] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[30] Yi-sui Sun,et al. Chaotic motion of comets in near-parabolic orbit: Mapping approaches , 1994 .
[31] James D. Meiss,et al. Resonances and Twist in Volume-Preserving Mappings , 2010, SIAM J. Appl. Dyn. Syst..
[32] Philip J. Morrison,et al. Magnetic field lines, Hamiltonian dynamics, and nontwist systems , 2000 .
[33] J. Lamb,et al. Time-reversal symmetry in dynamical systems: a survey , 1998 .
[34] Breakup of shearless invariant tori in cubic and quartic nontwist maps , 2012 .
[35] J. Pöschel,et al. A lecture on the classical KAM theorem , 2009, 0908.2234.
[36] J. Moser. On the Theory of Quasiperiodic Motions , 1966 .
[37] I. Percival,et al. Critical function and modular smoothing , 1990 .
[38] R. Llave,et al. Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.
[39] R. MacKay. Greene's residue criterion , 1992 .
[40] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[41] J. Bialek,et al. Fractal Diagrams for Hamiltonian Stochasticity , 1982, Hamiltonian Dynamical Systems.
[42] J. Wilbrink. Erratic behavior of invariant circles in standard-like mappings , 1987 .
[43] N. Murray. Critical function for the standard map , 1991 .
[44] S. Aubry,et al. Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .
[45] R. MacKay,et al. The one to two-hole transition for cantori , 1994 .
[46] James D. Meiss,et al. Visual explorations of dynamics: The standard map , 2008, 0801.0883.
[47] J. Meiss. The destruction of tori in volume-preserving maps , 2011, 1103.0050.
[48] Arturo Olvera,et al. Regularity Properties of Critical Invariant Circles of Twist Maps, and Their Universality , 2006, SIAM J. Appl. Dyn. Syst..
[49] Y. Aizawa,et al. Indicators of reconnection processes and transition to global chaos in nontwist maps , 1998, chao-dyn/9807024.
[50] Julyan H. E. Cartwright,et al. Chaotic advection in three-dimensional unsteady incompressible laminar flow , 1995, Journal of Fluid Mechanics.
[51] I. C. Percival,et al. Converse KAM: Theory and practice , 1985 .
[52] R. Llave,et al. Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation , 2010 .
[53] O. Piro,et al. Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .
[54] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[55] J. Rogers. Chaos , 1876 .
[56] Rafael de la Llave,et al. A Tutorial on Kam Theory , 2003 .
[57] James D. Meiss,et al. Transport in Hamiltonian systems , 1984 .
[58] Greene,et al. Scaling anomaly at the critical transition of an incommensurate structure. , 1987, Physical review. A, General physics.
[59] R. Calleja,et al. Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. , 2006, Chaos.
[60] J. D. Szezech,et al. Transport properties in nontwist area-preserving maps. , 2009, Chaos.
[61] Julio M. Ottino,et al. A dynamical systems approach to mixing and segregation of granular materials in tumblers , 2007 .
[62] Rafael de la Llave,et al. KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..
[63] Shaun Bullett,et al. Invariant circles for the piecewise linear standard map , 1986 .