Automated user modeling for personalized digital libraries

Digital libraries (DLs) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from DLs. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in DLs has been user driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct DLs that satisfy a user's necessity for information: Adaptive DLs, libraries that automatically learn user preferences and goals and personalize their interaction using this information.

[1]  Peter Brusilovsky,et al.  User as Student: Towards an Adaptive Interface for Advanced Web-Based Applications , 1997 .

[2]  Xiangmin Zhang Discriminant Analysis as a Machine Learning Method for Revision of User Stereotypes of Information Retrieval Systems , 2003 .

[3]  Andreas Rauber,et al.  SOMLib: a digital library system based on neural networks , 1999, DL '99.

[4]  Jirí Materna Automatic Web Page Classification , 2008, RASLAN.

[5]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[6]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[7]  P. Langley,et al.  Average-case analysis of a nearest neighbor algorthim , 1993, IJCAI 1993.

[8]  C. Lee Giles,et al.  A system for automatic personalized tracking of scientific literature on the Web , 1999, DL '99.

[9]  Fabio Abbattista,et al.  Learning Interaction Models in a Digital Library Service , 2001, User Modeling.

[10]  David L. Hicks,et al.  Towards Support for Personalization in Distributed Digital Library Settings , 2001, DELOS.

[11]  Luigi Palopoli,et al.  On the Complexity of Mining Association Rules , 2001, SEBD.

[12]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[13]  Forest Baskett,et al.  An Algorithm for Finding Nearest Neighbors , 1975, IEEE Transactions on Computers.

[14]  Judy Kay,et al.  Proceedings of the seventh international conference on User modeling , 1999 .

[15]  Yannis Manolopoulos,et al.  . EFFECTIVE PREDICTION OF WEB-USER ACCESSES: A DATA MINING APPROACH , 2001 .

[16]  Doug Riecken,et al.  Introduction: personalized views of personalization , 2000, CACM.

[17]  Camino Fernández,et al.  WAY : A user adapted access to information , 2005 .

[18]  Fabio Abbattista,et al.  Intelligent Information Retrieval in a Digital Library Service , 2000, DELOS.

[19]  Alfred Kobsa,et al.  Adaptable and Adaptive Information Access for All Users, Including the Disabled and the Elderly , 1997 .

[20]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[21]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[22]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[23]  Ian Witten,et al.  Data Mining , 2000 .

[24]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[25]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[26]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[27]  Nigel Ford,et al.  Individual differences, hypermedia navigation, and learning: an empirical study , 2000 .

[28]  B. Cornelis Personalizing search in digital libraries , 2003 .

[29]  Ingrid Zukerman,et al.  Predicting users' requests on the WWW , 1999 .

[30]  George Buchanan,et al.  Design Guidelines and User-Centred Digital Libraries , 1999, ECDL.

[31]  Dwi H. Widyantoro,et al.  Dynamic modeling and learning user profile in personalized news agent , 1999 .

[32]  Jean-David Ruvini Adapting to the User's Internet Search Strategy , 2003, User Modeling.

[33]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[34]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[35]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[36]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[37]  George D. Magoulas,et al.  Adaptive web-based learning: accommodating individual differences through system's adaptation , 2003, Br. J. Educ. Technol..

[38]  Umberto Straccia,et al.  The Personalized, Collaborative Digital Library Environment CYCLADES and Its Collections Management , 2003, Distributed Multimedia Information Retrieval.

[39]  Michael J. Pazzani,et al.  A hybrid user model for news story classification , 1999 .

[40]  Nicola Fanizzi,et al.  An adaptive visual environment for digital libraries , 1999, International Journal on Digital Libraries.

[41]  Constantine D. Spyropoulos,et al.  Exploiting learning techniques for the acquisition of user stereotypes and communities , 1999 .

[42]  Jean-David Ruvini Adapting to the user's internet search strategy on small devices , 2003, IUI '03.

[43]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[44]  Alfred Kobsa,et al.  Generic User Modeling Systems , 2001, User Modeling and User-Adapted Interaction.

[45]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[46]  Vasileios Hatzivassiloglou,et al.  Leveraging a common representation for personalized search and summarization in a medical digital library , 2003, 2003 Joint Conference on Digital Libraries, 2003. Proceedings..

[47]  Atsuhiro Takasu,et al.  Category Based Customization Approach for Information Retrieval , 2001, User Modeling.

[48]  Daniel S. Hirschberg,et al.  The Time Complexity of Decision Tree Induction , 1995 .

[49]  Takashi Washio,et al.  Automatic Web-Page Classification by Using Machine Learning Methods , 2001, Web Intelligence.

[50]  Ken Winter MyLibrary can help your library , 1999 .

[51]  Michael A. Shepherd,et al.  Adaptive user modeling for filtering electronic news , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[52]  Bin Zhu,et al.  A Collection of Visual Thesauri for Browsing Large Collections of Geographic Images , 1999, J. Am. Soc. Inf. Sci..

[53]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[54]  Alan F. Smeaton,et al.  Personalisation and recommender systems in digital libraries , 2005, International Journal on Digital Libraries.

[55]  Ian Davidson,et al.  Speeding up k-means Clustering by Bootstrap Averaging , 2003 .

[56]  Udi Manber,et al.  Experience with personalization of Yahoo! , 2000, CACM.

[57]  Pat Langley,et al.  Average-Case Analysis of a Nearest Neighbor Algorithm , 1993, IJCAI.

[58]  David A. Tyckoson What's Right with Reference. , 1999 .

[59]  Jos van Hillegersberg,et al.  Enterprise resource planning: ERP adoption by European midsize companies , 2000, CACM.

[60]  Robert Meersman,et al.  On the Complexity of Mining Quantitative Association Rules , 1998, Data Mining and Knowledge Discovery.

[61]  Ali Zilouchian,et al.  FUNDAMENTALS OF NEURAL NETWORKS , 2001 .

[62]  D. Lindley Bayes theory , 1984 .

[63]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[64]  K. Priyantha PERSONALIZATION TOOLS FOR ACTIVE LEARNING IN DIGITAL LIBRARIES by Champa Jayawardana, K. Priyantha Hewagamage and Masahito Hirakawa, Database Systems , 2001 .

[65]  Yiming Yang,et al.  Intelligent information retrieval , 1999, IEEE Intelligent Systems and their Applications.

[66]  Johan Bollen,et al.  MyLibrary, A Personalization Service for Digital Library Environments , 2001, DELOS.

[67]  Holly Mistlebauer,et al.  MyLibrary: Personalized Electronic Services in the Cornell University Library , 2000, D Lib Mag..

[68]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.