Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation

We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collisionless bow shock using data from the Time History of Events and Macroscale Interactions during Substorms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collisionless shocks. In every bow shock crossing examined, we observed both low-frequency ( 9000 Ω m; and (4) associated energy dissipation rates >10 μW m−3. The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for ∼90% of the wave burst durations. For ∼22% of these times, the wave-particle interactions needed to only be ≤ 0.1% efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collisionless shocks.

[1]  Can Huang,et al.  Ion dynamics at supercritical quasi-parallel shocks: Hybrid simulations , 2012 .

[2]  C. Kennel,et al.  A quarter century of collisionless shock research , 2013 .

[3]  W. Feldman,et al.  The oblique whistler instability in the earth's foreshock , 1983 .

[4]  A. Lui,et al.  Anomalous resistivity by fluctuation in the lower-hybrid frequency range , 2007 .

[5]  C. Kennel,et al.  A parametric survey of the first critical Mach number for a fast MHD shock , 1984, Journal of Plasma Physics.

[6]  H. Matsumoto,et al.  Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail , 1996 .

[7]  W. Feldman,et al.  The whistler heat flux instability: Threshold conditions in the solar wind , 1994 .

[8]  J. Kasper,et al.  Waves in interplanetary shocks: a wind/WAVES study. , 2007, Physical review letters.

[9]  F. Mozer,et al.  DEBYE-SCALE PLASMA STRUCTURES ASSOCIATED WITH MAGNETIC-FIELD-ALIGNED ELECTRIC FIELDS , 1998 .

[10]  A. Vaivads,et al.  Anomalous resistivity due to nonlinear lower-hybrid drift waves , 2005 .

[11]  I. Cairns,et al.  Electron acceleration by lower hybrid waves in magnetic reconnection regions , 2005 .

[12]  M. Thomsen,et al.  Nonlinear evolution of electromagnetic ion beam instabilities , 1993 .

[13]  D. Winske,et al.  Ion‐acoustic‐like waves excited by the reflected ions at the Earth's bow shock , 1985 .

[14]  A. Spitkovsky,et al.  ELECTRON INJECTION BY WHISTLER WAVES IN NON-RELATIVISTIC SHOCKS , 2010, 1009.3319.

[15]  M. Freeman,et al.  Anomalous resistivity and the nonlinear evolution of the ion‐acoustic instability , 2006 .

[16]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[17]  John R Wygant,et al.  The properties of large amplitude whistler mode waves in the magnetosphere: Propagation and relationship with geomagnetic activity , 2011 .

[18]  K. Papadopoulos,et al.  A kinetic cross‐field streaming instability , 1983 .

[19]  S. Bale,et al.  Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes , 1998 .

[20]  Wolfgang Baumjohann,et al.  Waveform and packet structure of lion roars , 1999 .

[21]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[22]  Lars P. Dyrud,et al.  Electron holes, ion waves, and anomalous resistivity in space plasmas , 2006 .

[23]  M. Scholer,et al.  On microinstabilities in the foot of high Mach number perpendicular shocks , 2006 .

[24]  H. Matsumoto,et al.  Nonlinear evolution of the electron two‐stream instability: Two‐dimensional particle simulations , 2005 .

[25]  Robert E. Ergun,et al.  The THEMIS Digital Fields Board , 2008 .

[26]  K. Meziane,et al.  Low‐frequency whistler waves and shocklets observed at quasi‐perpendicular interplanetary shocks , 2009 .

[27]  V. Angelopoulos,et al.  First Results of the THEMIS Search Coil Magnetometers , 2008 .

[28]  J. Eastwood,et al.  Contributions to the cross shock electric field at a quasiperpendicular collisionless shock , 2007 .

[29]  B. Lembège,et al.  Full particle simulations of short large‐amplitude magnetic structures (SLAMS) in quasi‐parallel shocks , 2004 .

[30]  M. Dunlop,et al.  Ion sound wave packets at the quasiperpendicular shock front , 2005 .

[31]  C. Cattell,et al.  STEREO and Wind observations of intense cyclotron harmonic waves at the Earth's bow shock and inside the magnetosheath , 2013 .

[32]  A. Szabo,et al.  Large‐amplitude electrostatic waves observed at a supercritical interplanetary shock , 2010 .

[33]  A. Lui,et al.  Quasi‐linear theory of anomalous resistivity , 2006 .

[34]  J. Souček,et al.  Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations , 2011 .

[35]  J P Eastwood,et al.  Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection. , 2014, Physical review letters.

[36]  J. Tao,et al.  Perpendicular electric field in two‐dimensional electron phase‐holes: A parameter study , 2008 .

[37]  J. Scudder,et al.  Large‐amplitude electrostatic waves associated with magnetic ramp substructure at Earth's bow shock , 2006 .

[38]  David G. Sibeck,et al.  Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology , 2013 .

[39]  E. Greenstadt,et al.  Plasma waves in the range of the lower hybrid frequency: ISEE 1 and 2 observations at the Earth's bow shock , 1988 .

[40]  C. Russell,et al.  Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .

[41]  R. Treumann Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks , 2009 .

[42]  F. Mozer,et al.  Multiscale whistler waves within Earth's perpendicular bow shock , 2012 .

[43]  R. Morse,et al.  ELECTRON CYCLOTRON DRIFT INSTABILITY. , 1970 .

[44]  T. Northrop,et al.  Emission of plasma waves by the Earth's bow shock , 1968 .

[45]  C. Russell,et al.  Magnetic structure of the low beta, quasi‐perpendicular shock , 1993 .

[46]  S. Schwartz,et al.  Electron cross talk and asymmetric electron distributions near the Earth's bowshock , 2012 .

[47]  S. Schwartz,et al.  Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves. , 2012, Physical review letters.

[48]  A. Szabo,et al.  Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks , 2012, 1207.6429.

[49]  L. Muschietti,et al.  Microturbulence in the electron cyclotron frequency range at perpendicular supercritical shocks , 2013 .

[50]  W. Manheimer,et al.  Theory and simulation of the beam cyclotron instability. , 1972 .

[51]  Charles F. Kennel,et al.  LIMIT ON STABLY TRAPPED PARTICLE FLUXES , 1966 .

[52]  R. Lin,et al.  Electron heating and phase space signatures at supercritical, fast mode shocks , 2001 .

[53]  F. Mozer,et al.  Electric field measurements at subcritical, oblique bow shock crossings , 1987 .

[54]  B. Lembège,et al.  Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front , 2002 .

[55]  B. Lembège,et al.  Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations , 2007 .

[56]  D. Lemons,et al.  Current-driven instabilities in a laminar perpendicular shock , 1978 .

[57]  D. Gurnett,et al.  Plasma wave turbulence associated with an interplanetary shock. [wave in solar wind upstream of magnetosphere] , 1979 .

[58]  C. T. Dum,et al.  Determination of wave growth from measured distribution functions and transport theory , 1980, Journal of Plasma Physics.

[59]  D. Newman,et al.  Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets , 2013 .

[60]  S. Gary Microinstabilities upstream of the Earth's bow shock: A brief review , 1981 .

[61]  N. Omidi,et al.  Structure of medium Mach number quasi-parallel shocks: Upstream and downstream waves , 1991 .

[62]  C. Russell,et al.  The resolved layer of a collisionless, high β, supercritical, quasi‐perpendicular shock wave: 1. Rankine‐Hugoniot geometry, currents, and stationarity , 1986 .

[63]  C. Russell,et al.  Plasma sheet electromagnetic power generation and its dissipation along auroral field lines , 2002 .

[64]  P. Kintner,et al.  Properties of small‐amplitude electron phase‐space holes observed by Polar , 2005 .

[65]  A. Moreira Stability analysis of magnetosheath lion roars , 1983 .

[66]  A. Szabo,et al.  Observations of electromagnetic whistler precursors at supercritical interplanetary shocks , 2012 .

[67]  F. Mozer,et al.  Electron demagnetization and heating in quasi‐perpendicular shocks , 2013 .

[68]  M. Freeman,et al.  Nonlinear Dependence of Anomalous Ion-Acoustic Resistivity on Electron Drift Velocity , 2008 .

[69]  K. Papadopoulos,et al.  Microinstabilities associated with a high Mach number, perpendicular bow shock , 1984 .

[70]  R. Yamazaki,et al.  Microinstabilities at perpendicular collisionless shocks: A comparison of full particle simulations with different ion to electron mass ratio , 2012, 1204.2539.

[71]  D. Gurnett,et al.  Short wavelength ion waves upstream of the Earth's bow shock , 1984 .

[72]  B. Lembège,et al.  Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms , 2009 .

[73]  C. Coillot,et al.  The Search Coil Magnetometer for THEMIS , 2008 .

[74]  H. Rosenbauer,et al.  Ion acoustic waves and related plasma observations in the solar wind , 1979 .

[75]  M. Dunlop,et al.  Lower hybrid waves at the shock front: a reassessment , 2008 .

[76]  J. Fu,et al.  Electron Cyclotron Drift Instability and Turbulence , 1972 .

[77]  John R Wygant,et al.  Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations , 2005 .

[78]  V. Krasnoselskikh,et al.  Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations , 2002 .

[79]  R. Lin,et al.  Electrostatic Turbulence and Debye-Scale Structures Associated with Electron Thermalization at Collisionless Shocks , 2002 .

[80]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[81]  V. Angelopoulos,et al.  THEMIS ESA First Science Results and Performance Issues , 2008 .

[82]  R. Z. Sagdeev,et al.  Cooperative Phenomena and Shock Waves in Collisionless Plasmas , 1966 .

[83]  A. Vedenov Quasi-linear plasma theory (theory of a weakly turbulent plasma) , 1963 .

[84]  Y. Hobara,et al.  A statistical study of the cross‐shock electric potential at low Mach number, quasi‐perpendicular bow shock crossings using Cluster data , 2012 .

[85]  A. Szabo,et al.  Shocklets, SLAMS, and field‐aligned ion beams in the terrestrial foreshock , 2012, 1207.5561.

[86]  C. T. Dum,et al.  Turbulent Heating and Quenching of the Ion Sound Instability , 1974 .

[87]  Steven J. Schwartz,et al.  Quasi-parallel shocks: A patchwork of three-dimensional structures , 1991 .

[88]  S. Schwartz,et al.  Isothermal magnetosheath electrons due to nonlocal electron cross talk , 2014 .

[89]  B. E. Wells,et al.  Electron hole as an antenna radiating plasma waves , 2001 .

[90]  B. Lembège,et al.  Shock front nonstationarity and ion acceleration in supercritical perpendicular shocks , 2009 .

[91]  C. Russell,et al.  Structure of a quasi-parallel, quasi-laminar bow shock , 1977 .

[92]  John R Wygant,et al.  Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora , 2000 .

[93]  A. Hull Partition of Temperature Between Electrons and Ions across Collisionless, Fast Mode Shocks , 2000 .

[94]  F. Coroniti Dissipation discontinuities in hydromagnetic shock waves , 1970, Journal of Plasma Physics.

[95]  H. Kucharek,et al.  Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation , 2003 .

[96]  Vassilis Angelopoulos,et al.  The Electric Field Instrument (EFI) for THEMIS , 2008 .

[97]  C. Cattell,et al.  Electron trapping and charge transport by large amplitude whistlers , 2010 .

[98]  M. Dunlop,et al.  Cluster magnetic field observations of the bowshock: Orientation, motion and structure , 2001 .

[99]  M. W. Dunlop,et al.  Nonstationarity and reformation of high‐Mach‐number quasiperpendicular shocks: Cluster observations , 2007 .

[100]  Sin Ming Loo,et al.  Three‐dimensional structure of electron holes driven by an electron beam , 2000 .