The decade of the dendritic NMDA spike

In the field of cortical cellular physiology, much effort has been invested in understanding thick apical dendrites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an electrical signal (“NMDA spike”) that is specific for these branches. Basal, oblique, and apical tuft dendrites receive a high density of glutamatergic synaptic contacts. Synchronous activation of 10–50 neighboring glutamatergic synapses triggers a local dendritic regenerative potential, NMDA spike/plateau, which is characterized by significant local amplitude (40–50 mV) and an extraordinary duration (up to several hundred milliseconds). The NMDA plateau potential, when it is initiated in an apical tuft dendrite, is able to maintain a good portion of that tuft in a sustained depolarized state. However, if NMDA‐dominated plateau potentials originate in proximal segments of basal dendrites, they regularly bring the neuronal cell body into a sustained depolarized state, which resembles a cortical Up state. At each dendritic initiation site (basal, oblique, and tuft) an NMDA spike creates favorable conditions for causal interactions of active synaptic inputs, including the spatial or temporal binding of information, as well as processes of short‐term and long‐term synaptic modifications (e.g., long‐term potentiation or long‐term depression). Because of their strong amplitudes and durations, local dendritic NMDA spikes make up the cellular substrate for multisite independent subunit computations that enrich the computational power and repertoire of cortical pyramidal cells. We propose that NMDA spikes are likely to play significant roles in cortical information processing in awake animals (spatiotemporal binding, working memory) and during slow‐wave sleep (neuronal Up states, consolidation of memories). © 2010 Wiley‐Liss, Inc.

[1]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[2]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[3]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[4]  O Herreras,et al.  Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. , 1990, Journal of neurophysiology.

[5]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[6]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[7]  A. Mikami,et al.  Oscillatory neuronal activity related to visual short-term memory in monkey temporal pole. , 1992, Neuroreport.

[8]  D. Tank,et al.  Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  B Sakmann,et al.  Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. , 1992, The Journal of physiology.

[10]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[11]  H. Dodt Infrared-interference videomicroscopy of living brain slices. , 1993, Advances in experimental medicine and biology.

[12]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[16]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[17]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[18]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[19]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[20]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[21]  P. Branchereau,et al.  Pyramidal neurons in rat prefrontal cortex show a complex synaptic response to single electrical stimulation of the locus coeruleus region: Evidence for antidromic activation and GABAergic inhibition using in vivo intracellular recording and electron microscopy , 1996, Synapse.

[22]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[23]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[24]  George J Augustine,et al.  Chemical Two-Photon Uncaging: a Novel Approach to Mapping Glutamate Receptors , 1997, Neuron.

[25]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[26]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[27]  D. Ferster,et al.  Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex , 1999, Neuron.

[28]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[29]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[30]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[31]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[32]  R. C. Cannon,et al.  Distribution of spontaneous currents along the somato-dendritic axis of rat hippocampal CA1 pyramidal neurons , 2000, Neuroscience.

[33]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[34]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[35]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[36]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[37]  J. Hobson,et al.  Visual discrimination learning requires sleep after training , 2000, Nature Neuroscience.

[38]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[39]  J C Oakley,et al.  Initiation and propagation of regenerative Ca(2+)-dependent potentials in dendrites of layer 5 pyramidal neurons. , 2001, Journal of neurophysiology.

[40]  J C Oakley,et al.  Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. , 2001, Journal of neurophysiology.

[41]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[42]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[43]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[44]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[45]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[46]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[47]  W. N. Ross,et al.  Spatial Segregation and Interaction of Calcium Signalling Mechanisms in Rat Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of physiology.

[48]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[49]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[50]  H. Seung,et al.  Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. , 2003, Cerebral cortex.

[51]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[52]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[54]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[55]  J. Csicsvari,et al.  Communication between neocortex and hippocampus during sleep in rodents , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[57]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[58]  P. Goldman-Rakic,et al.  Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree , 2004, The Journal of physiology.

[59]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[60]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[61]  Scott M Thompson,et al.  Unique roles of SK and Kv4.2 potassium channels in dendritic integration. , 2004, Neuron.

[62]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[63]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[64]  David McLaughlin,et al.  States of High Conductance in a Large-Scale Model of the Visual Cortex , 2002, Journal of Computational Neuroscience.

[65]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[66]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[67]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[68]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[69]  Srdjan D Antic,et al.  A Strict Correlation between Dendritic and Somatic Plateau Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons , 2005, The Journal of Neuroscience.

[70]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[71]  Shigeo Watanabe,et al.  Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons , 2005, Cellular and Molecular Neurobiology.

[72]  N. Spruston,et al.  Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity , 2005, Nature Neuroscience.

[73]  L. M. Loew,et al.  Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons , 2005, The Journal of Membrane Biology.

[74]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[75]  Knut Holthoff,et al.  Dendritic spikes and activity-dependent synaptic plasticity , 2006, Cell and Tissue Research.

[76]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[77]  Maxim Volgushev,et al.  Precise Long-Range Synchronization of Activity and Silence in Neocortical Neurons during Slow-Wave Sleep , 2006, The Journal of Neuroscience.

[78]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[79]  D. Durstewitz,et al.  Beyond bistability: Biophysics and temporal dynamics of working memory , 2006, Neuroscience.

[80]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[81]  J. Kao,et al.  Hyperexcitability of Distal Dendrites in Hippocampal Pyramidal Cells after Chronic Partial Deafferentation , 2007, The Journal of Neuroscience.

[82]  Leslie M. Loew,et al.  Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites , 2007, Journal of Neuroscience Methods.

[83]  Dejan Zecevic,et al.  Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre‐ and post‐synaptic activity: a combined voltage‐ and calcium‐imaging study , 2007, The Journal of physiology.

[84]  Karel Svoboda,et al.  Activity-Dependent Plasticity of the NMDA-Receptor Fractional Ca2+ Current , 2007, Neuron.

[85]  Srdjan D Antic,et al.  Voltage and calcium transients in basal dendrites of the rat prefrontal cortex , 2007, The Journal of physiology.

[86]  Gezinus Wolters,et al.  Coherence and recurrency: maintenance, control and integration in working memory , 2007, Cognitive Processing.

[87]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[88]  J. Born,et al.  Odor Cues During Slow-Wave Sleep Prompt Declarative Memory Consolidation , 2007, Science.

[89]  N. Spruston,et al.  Dendritic spikes induce single-burst long-term potentiation , 2007, Proceedings of the National Academy of Sciences.

[90]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[91]  Matthew E Larkum,et al.  Synaptic clustering by dendritic signalling mechanisms , 2008, Current Opinion in Neurobiology.

[92]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[93]  F. Gomez-Pinilla,et al.  Exercise normalizes levels of MAG and Nogo‐A growth inhibitors after brain trauma , 2007, The European journal of neuroscience.

[94]  Leslie M Loew,et al.  Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons , 2008, The European journal of neuroscience.

[95]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[96]  Charles J. Wilson,et al.  Up and down states , 2008, Scholarpedia.

[97]  Hiroyoshi Miyakawa,et al.  A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons , 2008, The European journal of neuroscience.

[98]  Kenji Morita Possible Role of Dendritic Compartmentalization in the Spatial Working Memory Circuit , 2008, The Journal of Neuroscience.

[99]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[100]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[101]  M. Bennett,et al.  Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. , 2009, Biochemical Society transactions.

[102]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[103]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[104]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[105]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[106]  Srdjan D Antic,et al.  Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. , 2009, Journal of neurophysiology.

[107]  Leonardo L. Gollo,et al.  Active Dendrites Enhance Neuronal Dynamic Range , 2009, PLoS Comput. Biol..

[108]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[109]  Knut Holthoff,et al.  Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons , 2010, The Journal of physiology.