Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure

Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.

[1]  S. C. Lim,et al.  Generalized Ornstein–Uhlenbeck processes and associated self-similar processes , 2003 .

[2]  R. Tokas,et al.  RETRACTED: Fractals and superstructures in gadolinia thin film morphology: Influence of process variables on their characteristic parameters , 2006, Thin Solid Films.

[3]  J. Lamperti Semi-stable stochastic processes , 1962 .

[4]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[5]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[6]  M. Stein Space–Time Covariance Functions , 2005 .

[7]  Timothy M. Garoni,et al.  Lévy flights: Exact results and asymptotics beyond all orders , 2002 .

[8]  R. Adler The Geometry of Random Fields , 2009 .

[9]  K. Falconer Tangent Fields and the Local Structure of Random Fields , 2002 .

[10]  Tilmann Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[11]  Dale N. Anderson A multivariate Linnik distribution , 1992 .

[12]  C. Mihali,et al.  A FRACTAL AND LONG-RANGE CORRELATION ANALYSIS OF PLANT NUCLEUS ULTRASTRUCTURE , 2006 .

[13]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[14]  A. Ayache,et al.  Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets , 2005 .

[15]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[16]  M. L. Stein Seasonal variations in the spatial‐temporal dependence of total column ozone , 2007 .

[17]  Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .

[18]  F. Roueff,et al.  Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .

[19]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[20]  T. Garoni,et al.  d-dimensional Lévy flights: Exact and asymptotic , 2002 .

[21]  N. Leonenko,et al.  Tauberian and Abelian theorems for correlation function of a homogeneous isotropic random field , 1991 .

[22]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[23]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[24]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[25]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[26]  G. Palasantzas,et al.  Effect of roughness on the conductivity of semiconducting thin films/quantum wells with double rough boundaries , 2003 .

[27]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[28]  Andrew T. A. Wood,et al.  INCREMENT-BASED ESTIMATORS OF FRACTAL DIMENSION FOR TWO-DIMENSIONAL SURFACE DATA , 2000 .

[29]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[30]  Self-Similarity and Lamperti Transformation for Random Fields , 2007 .

[31]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[32]  S. Kotz,et al.  Analytic and Asymptotic Properties of Linnik′s Probability Densities .II. , 1995 .

[33]  Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece) , 2007 .

[34]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[35]  Patrick Flandrin,et al.  From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation , 2003 .

[36]  M. Erdogan,et al.  Analytic and Asymptotic Properties of Generalized Linnik Probability Densities , 1998 .

[37]  N. Leonenko,et al.  Limit Theorems for Random Fields with Singular Spectrum , 1999 .

[38]  V. P. Dimri,et al.  Fractal behaviour of the earth system , 2005 .

[39]  M. Martorella,et al.  A sea surface fractal model for ocean remote sensing , 2000 .

[40]  J. Korevaar Tauberian Theory: A Century of Developments , 2010 .

[41]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[42]  S. C. Lim,et al.  The fractional oscillator process with two indices , 2008, 0804.3906.

[43]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[44]  Ming Li,et al.  A generalized Cauchy process and its application to relaxation phenomena , 2006 .

[45]  James S. Harris,et al.  Tables of integrals , 1998 .

[46]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[47]  Antoine Ayache,et al.  Hausdorff dimension of the graph of the Fractional Brownian Sheet , 2004 .

[48]  C. Houdré,et al.  An Example of Inflnite Dimensional Quasi{Helix , 2003 .

[49]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[50]  D Stoyan,et al.  Statistical characterization of TEM images of silica‐filled rubber , 2005, Journal of microscopy.

[51]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[52]  Dionissios T. Hristopulos,et al.  Spatiotemporal Mapping of Environmental Health Processes — The BME Approach , 1998 .