Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure
暂无分享,去创建一个
[1] S. C. Lim,et al. Generalized Ornstein–Uhlenbeck processes and associated self-similar processes , 2003 .
[2] R. Tokas,et al. RETRACTED: Fractals and superstructures in gadolinia thin film morphology: Influence of process variables on their characteristic parameters , 2006, Thin Solid Films.
[3] J. Lamperti. Semi-stable stochastic processes , 1962 .
[4] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[5] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[6] M. Stein. Space–Time Covariance Functions , 2005 .
[7] Timothy M. Garoni,et al. Lévy flights: Exact results and asymptotics beyond all orders , 2002 .
[8] R. Adler. The Geometry of Random Fields , 2009 .
[9] K. Falconer. Tangent Fields and the Local Structure of Random Fields , 2002 .
[10] Tilmann Gneiting,et al. Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..
[11] Dale N. Anderson. A multivariate Linnik distribution , 1992 .
[12] C. Mihali,et al. A FRACTAL AND LONG-RANGE CORRELATION ANALYSIS OF PLANT NUCLEUS ULTRASTRUCTURE , 2006 .
[13] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[14] A. Ayache,et al. Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets , 2005 .
[15] George Christakos,et al. Modern Spatiotemporal Geostatistics , 2000 .
[16] M. L. Stein. Seasonal variations in the spatial‐temporal dependence of total column ozone , 2007 .
[17] Yimin Xiao. Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .
[18] F. Roueff,et al. Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .
[19] Frits Beukers,et al. SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .
[20] T. Garoni,et al. d-dimensional Lévy flights: Exact and asymptotic , 2002 .
[21] N. Leonenko,et al. Tauberian and Abelian theorems for correlation function of a homogeneous isotropic random field , 1991 .
[22] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[23] From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.
[24] Peter Hall,et al. Fractal analysis of surface roughness by using spatial data , 1999 .
[25] R. Adler,et al. The Geometry of Random Fields , 1982 .
[26] G. Palasantzas,et al. Effect of roughness on the conductivity of semiconducting thin films/quantum wells with double rough boundaries , 2003 .
[27] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[28] Andrew T. A. Wood,et al. INCREMENT-BASED ESTIMATORS OF FRACTAL DIMENSION FOR TWO-DIMENSIONAL SURFACE DATA , 2000 .
[29] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[30] Self-Similarity and Lamperti Transformation for Random Fields , 2007 .
[31] 곽순섭,et al. Generalized Functions , 2006, Theoretical and Mathematical Physics.
[32] S. Kotz,et al. Analytic and Asymptotic Properties of Linnik′s Probability Densities .II. , 1995 .
[33] Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece) , 2007 .
[34] R. Peltier,et al. Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .
[35] Patrick Flandrin,et al. From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation , 2003 .
[36] M. Erdogan,et al. Analytic and Asymptotic Properties of Generalized Linnik Probability Densities , 1998 .
[37] N. Leonenko,et al. Limit Theorems for Random Fields with Singular Spectrum , 1999 .
[38] V. P. Dimri,et al. Fractal behaviour of the earth system , 2005 .
[39] M. Martorella,et al. A sea surface fractal model for ocean remote sensing , 2000 .
[40] J. Korevaar. Tauberian Theory: A Century of Developments , 2010 .
[41] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .
[42] S. C. Lim,et al. The fractional oscillator process with two indices , 2008, 0804.3906.
[43] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[44] Ming Li,et al. A generalized Cauchy process and its application to relaxation phenomena , 2006 .
[45] James S. Harris,et al. Tables of integrals , 1998 .
[46] P. Guttorp,et al. Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .
[47] Antoine Ayache,et al. Hausdorff dimension of the graph of the Fractional Brownian Sheet , 2004 .
[48] C. Houdré,et al. An Example of Inflnite Dimensional Quasi{Helix , 2003 .
[49] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[50] D Stoyan,et al. Statistical characterization of TEM images of silica‐filled rubber , 2005, Journal of microscopy.
[51] John T. Kent,et al. Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .
[52] Dionissios T. Hristopulos,et al. Spatiotemporal Mapping of Environmental Health Processes — The BME Approach , 1998 .